NeoGCP fFD

사용설명서

Rev. J

- 본 메뉴얼은 NeoGCP fFD Ver. 2.01 이상의 버전에 맞게 적용된 메뉴얼입니다.

- 이전 버전의 메뉴얼은 당사에 문의 바랍니다.

펌웨어 버전	적용 메뉴얼 버전	변경사항		
1.15	Rev. E			
1.16	Rev. F	- 과전류, 지락과전류의 보호동작 설정 변경 (정반한시 추가, 순시 추가) - 반한시 특성곡선 변경 - 역률 표기 개선		
1.17	Rev. G	- 서브차단기 차단신호 출력유지시간 설정 추가 - 발전기 상태입력 설정 추가 (접점, 전압, 접점+전압)		
1.17	Rev. H	- 사용설명서 (9.7. 직렬 통신 설정 부분) 오타 수정		
2.01	Rev. J	- 과전압, 과전류, 지락과전류 보호동작 기능 변경 - 과전압 순시 추가 - 소방운전 테스트 모드 추가 - 마스터 fFD 확장모듈 사용 추가		

차 례

1. NeoGCP fFD의 소개6
1.1. NeoGCP fFD 란?
1.2. 제품 특징
1.3. 제품 이미지
1.4. 제품 사양
2. 버튼 사용방법 및 LED 점등 상태7
2.1. 버튼 사용방법
2.2. LED 점등 상태
3. LCD 표시 상태8
3.1. 시작 화면
3.2. 메인 화면
3.3. 고장 화면
3.4. 메뉴 선택 화면
3.5. 메뉴 설정 화면
4. 전선 사양 및 컷팅 사이즈10
4.1. 전선 사양 10
4.2. 컷팅 사이즈
5. 입력 및 출력단자11
5.1. [1]번, [2]번 Vdc ±11
5.2. [6]번 ~ [9]번 GEN PT U, V, W, N12
5.3. [12]번~[14]번 RS485 ±12
5.3. [12]번~[14]번 RS485 ±
5.3. [12]번~[14]번 RS485 ±
5.3. [12] 번~[14] 번 RS485 ± 12 5.4. [15] 번~ [24] 번 접점입력(D/I) 12 5.5. [25] 번~ [40] 번 릴레이 출력(D/O) 12 5.6. [47] 번, [48] 번 GEN ZCT K, L 13
5.3. [12]번~[14]번 RS485 ± 12 5.4. [15]번~ [24]번 접점입력(D/I) 12 5.5. [25]번~ [40]번 릴레이 출력(D/O) 12 5.6. [47]번, [48]번 GEN ZCT K, L 13 5.7. [49]번~ [52]번 GEN CT U, V, W, N 13

	6.1. 소방부하	14
	6.2. 비상부하	14
	6.3. 소방전원 보존형 발전기	14
	6.4. 발전 차단기	14
	6.5. 피더 차단기	14
	6.6. 서브 차단기	14
	6.7. 레벨 0 - 운전 상태	14
	6.8. 레벨 1 - 소방운전 상태	15
	6.9. 레벨 2 - 전원제어 상태	15
	6.10. 레벨 3 - 전원차단 상태	15
	6.11. 마스터 fFD	15
	6.12. 슬레이브 fFD	15
7.	사양 설정	16
	7.1. 부하의 구분	16
	7.2. 차단기의 종류	16
	7.3. 출력접점 설정	16
	7.4. 소방운전 보전 제어 부하량 설정	16
8.	동작 순서	17
	8.1. 상태 구분	17
	8.2. 블록 [BLOCK]	20
	8.3. 수동 [MANUAL]	20
	8.4. 자동 [AUTO]	20
9.	메뉴 설정	21
	9.1. 디바이스 설정	21
	9.2. 피더반 환경 설정	23
	9.3. 접점입력(D/I) 설정	25
	9.4. 릴레이출력(D/O) 설정	29
	9.5. 제어 시퀀스 설정	33
	9.6. 보호동작 설정	33

0	9.7. 직렬 통신 설정	34
Ģ	9.8. 센싱 게인 설정	35
Ģ	9.9. 보호동작/소방출력 테스트	35
(9.10. 제어이력 확인	35
(9.11. 고장이력 확인	35
(9.12. 컨트롤러 점검	35
10.	고장 항목	.36
11.	통신 프로토콜 - MODBUS	.36
	11.1. 마스터 Request (04h)	. 37
	11.2. 마스터 Control(05h)	. 38
	11.3. 슬레이브 Request (04h)	39
	11.4. 통신 예시	40
12.	반한시 특성 곡선	.40

1. NeoGCP fFD의 소개

1.1. NeoGCP fFD 란?

- Neo Generator Control Panel for Firefighting Feeder (NeoGCP fFD)는 마이크로 프로세서를 이용한 디지털 제어방식의 소방전원 보존형 발전기를 위한 피더 컨트롤러 입니다.

- 1.2. 제품 특징
 - 192 × 64 그래픽 LCD를 사용한 한글 디스플레이로 피더 컨트롤러의 설정을 쉽고 간편하게 할 수 있습니다.
 - OVR, UVR, OCR, OCGR 기능이 내장되어 있습니다.
 - 1% 오차범위의 빠르고 정확한 전압, 전류 계측이 가능합니다.
 - 전체 부하량에 따라 소방전원이 소방운전, 전원제어, 전원차단의 3단계로 보존됩니다.
 - [블록], [수동], [자동] 운전이 가능하며, 보호동작이 미사용, 경고, 차단의 3단계로 보호됩니다.
 - 최대 10개의 고장이력 및 최대 150개의 제어이력 데이터 열람이 가능합니다.
 - RS485 통신포트가 내장되어 있으며, Modbus Protocol 04h, 05h를 지원합니다.
 - 디지털입력 10개, 디지털출력 8개의 자유로운 설정이 가능합니다.
- 1.3. 제품 이미지
 - 제품의 이미지는 아래와 같습니다.

〈NeoGCP fFD 전면 이미지 〉

〈 NeoGCP fFD 후면 이미지〉

1.4. 제품 사양

- 제품의 사양은 아래와 같습니다.

외형크기 (mm)	240(L)×178(W)×53.5(H)	운전가능 온도	−20 ~ 70 °C
중량	약 862 g	CT 입력범위	0 ~ 5 [A]
컨트롤러 전원	8 ~ 32 Vdc	발전전원	Max AC 550 [Vrms]
최대소모 전력	4.8 W	발전상태 감지	접점, 전압

2. 버튼 사용방법 및 LED 점등 상태

- 2.1. 버튼 사용방법
 - 전면의 버튼으로 각종 운전정보의 조정 및 설정을 변경할 수 있습니다.

구분	내용	비고
방향버튼	화면전환 및 메뉴에서 설정 값 변경 시 사용합니다. 고장내역 표시 화면에서 항목 전환 시 사용합니다.	
MODE	블록], [수동], [자동] 상태로 변경할 때 사용합니다.	
MENU	메인 화면에서 메뉴 선택 화면으로 전환할 때 사용합니다.	
ENTER	메뉴 선택 화면에서 메뉴를 선택할 때 사용합니다. 메뉴 설정 화면에서 주요 정보를 입력할 때 사용합니다.	
ESC	메뉴 선택 화면에서 메인 화면으로 전환 시 사용합니다. 메뉴 설정 화면에서 설정 값 변경 중 취소 시에 사용합니다. 고장 확인 화면에서 고장을 해제하지 않고 메인 화면으로 전환할 때 사용합니다.	
LAMP TEST	메인 화면의 LED를 점검할 때 사용합니다.	
ALARM	고장 발생 시 고장 확인 화면으로 이동할 때 사용합니다. 다수의 고장 발생 시 고장의 내용을 순차적으로 확인할 때 사용합니다.	
RESET	고장 발생 시 고장을 해제할 때 사용합니다. 고장 확인 화면에서 고장을 해제할 때 사용합니다.	
CLOSE	수동 운전 중 차단기를 투입할 때 사용합니다.	
OPEN	수동 운전 중 차단기를 차단할 때 사용합니다.	

2.2. LED 점등 상태

- LED는 각종 운전 상태와 고장상황 및 차단기의 투입, 차단 여부에 대한 상태를 표시합니다.

항목	색상	내용
BLOCK	황색	[블록] 상태에서 점등
MANUAL	황색	[수동] 상태에서 점등
AUTO	황색	[자동] 상태에서 점등
GRID	적색	상용전원 상태 표시, [UVR 접점] 상태에 따라서 점등, 소등
ALARM	적색	고장 상황 발생 시 점등, 고장 상황 해제 시 소등
CLOSE	적색	[차단기 투입] 상태에서 점등, [차단기 차단] 상태에서 소등
OPEN	녹색	[차단기 차단] 상태에서 점등, [차단기 투입] 상태에서 소등
GEN START	황색	발전기의 운전상태 표시, [발전차단기 보조접점] 상태에 따라서 점등, 소등

3. LCD 표시 상태

3.1. 시작 화면

- 전원이 켜지게 되면 시작 화면이 나타나며, 제품 번호, 프로그램 버전이 표시됩니다.

〈시작 화면〉

- 3.2. 메인 화면
 - 시작 화면에서 프로그램의 부팅이 완료되면 메인 화면으로 화면이 전환됩니다.

- 메인 화면에서는 발전기 및 부하의 주요 정보들이 표시됩니다.

- 메인 화면은 총 4줄로 표시되며 각 줄의 표시내용은 아래와 같습니다.

순서	표시내용
1줄	운전 상태, 준비 상태, 차단기 투입/차단 타이머
2줄	유효전력 [kW], 발전 선간 전압 [V], 발전 전류 [A], 역률
3줄	[▲], [▼] 버튼으로 표시내용 변경 가능
	- 전체부하 [kW], 소방부하 [kW], 비상부하 [kW], 피상전력 [kVA], 무효전력 [kvar]
	- 발전 선간전압 [V], 발전 상전압 [V], 발전 주파수 [Hz], 발전 전류 [A], 지락전류 [A]
	- 적산 전력량 [kWh], 무효 전력량 [kvarh], 현재 날짜, 시간
4줄	접점입력(D/I) 01~10, 릴레이출력(D/O) 1~8

[마스터]		투 입	:0000
5 0 0 k W	380V	950A	0.00
전 체 부 하			5 0 0 k W
i : 1 2 3 4 5 6 7 8	90/0:123	45678	

< 메인 화면 >

3.3. 고장 화면

3.3.1. 고장 확인

- 고장 상황이 발생하게 되면 자동으로 고장 화면으로 전환됩니다.

〈 고장 화면 〉

- [고장 내용] 우측의 숫자는 발생한 고장의 개수를 나타내며, 다수의 고장이 발생한 경우

[ALARM] 버튼을 누르면 발생한 고장의 내용을 순차적으로 확인할 수 있습니다.

3.3.2. 고장 해제

- 고장 상황이 해결되었을 경우 [RESET] 버튼을 누르면 발생한 고장의 내용이 해제됩니다.

- 고장 상황을 해결하지 않고 [ALARM] 버튼을 누르면 메인 화면으로 전환됩니다.

3.4. 메뉴 선택 화면

- 메인 화면에서 [MENU] 버튼을 누르면, 메뉴 선택 화면으로 전환이 됩니다.
- 메뉴 선택 화면에서 [▲], [▼] 버튼을 사용하여 원하는 항목을 선택 후 [ENTER] 버튼을 누르면 해당 항목으로 이동 후 메뉴 설정 화면으로 이동합니다.

3.5. 메뉴 설정 화면

- 메뉴 설정 화면의 밑줄에는 현재 메뉴 설정 화면에서 설정 가능한 메뉴의 영어 약자가 표시되며,

현재 선택한 메뉴의 영어 약자에 느낌표가 표시됩니다.

〉 마 스 스 / 슬 레 이 브 설 정	〉 슬레이브개수 설정
: 마 스 터	: 0 0
ITYPE SLAVE	IYPE ISLAVE
< 메뉴	설정 화면 〉

- 메뉴 설정화면에서 [◀], [▶] 버튼을 사용하여 원하는 항목을 선택 후 [ENTER] 버튼을 누른 후

[▲], [▼] 버튼을 사용하여 발전기의 주요 정보들을 수정할 수 있습니다.

4. 전선 사양 및 컷팅 사이즈

4.1. 전선 사양

- NeoGCP fFD의 모든 입출력은 플러거블 (pluggable) 터미널 블록을 통해 이루어집니다.

〈 플러거블 터미널 블록 〉

- 결선 사양은 아래와 같습니다.

전선 굵기	0.34 ~ 2.5 mm ²
단선 (AWG)	12 ~ 24
연선 (AWG)	12 ~ 24
스크류 크기	M3
핀 터미널 길이	6 ~ 7 mm

4.2. 컷팅 사이즈

5. 입력 및 출력단자

No.	항목	설명	No.	항목	설명
1	VDC+	컨트롤러 전원 입력	52	GEN CT U+	
2	VDC-	8~32 [Vdc]	51	GEN CT V+	피더 차단기 전류 입력 (CT 2차)
3	MAIN R		50	GEN CT W+	0.01~10 [A], Max 10 [A], Peak 1 [s]
4	MAIN S	사용하지 않음	49	GEN CT N	
5	MAIN T		48	GEN ZCT K	피더차단기지락전류 입력(CT 2차)
6	GEN PT U		47	GEN ZCT L	0.01~10 [A], Max 10 [A], Peak 1 [s]
7	GEN PT V	피더 차단기 전압 입력	46	SENSOR 1	
8	GEN PT W	Max AC 550 [V]	45	SENSOR 2	
9	GEN PT N		44	SENSOR 3	1185171019
10	MPU+	사용하기 아우	43	SENSOR 4	시영이지 않음
11	MPU-	시중이지 않는	42	SENSOR 5	
12	RS485+	DS/185 토시 이려	41	SENSORCOM-	
13	RS485-		40		
14	RS485 END	RS485-와연결시 <i>종</i> 단저항120[Ω]	39	KLLATI	
15	DI 1		38		
16	DI 2		37	RELAT Z	
17	DI 3		36		
18	DI 4		35	KLLAT 5	
19	DI 5	Digital Input 저저 이려 (\/dc-)	34		
20	DI 6		33	KLLAT4	RELAY Output 접점 출력
21	DI 7		32		Max 250 [Vac], 24 [Vdc], 5 [A]
22	DI 8		31	KLLAT J	
23	DI 9]	30		
24	DI 10		29	RELATO	
			28		
			27		
			26 25	RELAY 8	

5.1. [1]번, [2]번 Vdc ±

- [1]번, [2]번 단자를 통하여 8~32 [Vdc]의 전원을 공급합니다.
- 전원이 공급될 때 공급전원의 임피던스에 따른 돌입전류가 발생할 가능성이 있습니다.
- 돌입전류에 의한 제품손상을 방지하기 위하여, 퓨즈나 차단기 같은 과전류 보호 장치를 전원선에
 직렬로 설치하시기를 권장합니다.

〈 전원공급 과전류 보호장치 예시 〉

5.2. [6] 번 ~ [9] 번 GEN PT U, V, W, N

- [6] 번 ~ [9] 번 단자를 통해 Max AC 550 [Vrms]의 피더 차단기 전압을 감지합니다.
- 피더 차단기 전압이 AC 550 [Vrms]를 초과한다면 PT(변압기: Potential Transformer)를 사용해야 하며

PT 2차 전압이 AC 550 [Vrms]를 초과해서는 안됩니다.

영향을 받는 메뉴	설정값	내용
[피더반 환경설정] → [정격전압]	110 ~ 6600	PT 1차 전압 입력
[피더반 환경설정] → [PT 비율]	1 ~ 99.99	사용자가 사용하는 PT 비율

- 5.3. [12] 번~ [14] 번 RS485 ±
 - [12] 번, [13] 번 단자를 통해 RS485 ± 입력을 감지합니다.
 - [13]번, [14]번 단자를 연결시키면 종단 저항 120 [Ω] 이 연결됩니다.
- 5.4. [15] 번 ~ [24] 번 접점입력(D/I)
 - [15] ~ [24] 번 단자를 통해 사용자가 설정한 D/I Vdc 가 입력되면, 〈디지털 입력 배선 모식도〉와 같이 해당 접점의 신호가 송출됩니다.
 - D/I의 자세한 사항은 [9.3 접점입력(D/I) 설정]을 참고하시기 바랍니다.

〈디지털 입력 배선 모식도〉

5.5. [25] 번 ~ [40] 번 릴레이 출력(D/O)

- [25] 번 ~ [40] 번 단자를 통해 사용자가 설정한 출력신호가 송출됩니다.
- REALY 1 ~ REALY 8의 접점 용량은 250 [Vac], 24 [Vdc], MAX 5 [A] 입니다.
- 외부 RELAY 사용 시 접점용량을 고려하신 후 RELAY를 사용하시기 바랍니다.
- D/O의 자세한 사항은 [9.4 릴레이출력(D/O) 설정]을 참고하시기 바랍니다.

〈 RELAY 출력 배선 모식도 〉

5.6. [47] 번, [48] 번 GEN ZCT K, L

- [47] 번, [48] 번 단자를 통해 피더 차단기 지락전류를 감지합니다.

- 계측 가능한 최소전류는 0.01 [Arms]이며, 최대전류는 10 [Arms], 피크타임은 1 [s]입니다.

- 사용하시는 ZCT (영상 변류기 : Zero Current Transformer)에 맞추어 설정을 변경해야 합니다.

메뉴 설정 위치	설정값	내용
[피더반 환경설정] → [지락 CT 비율]	사용자 설정	피더 차단기 지락전류 감지

5.7. [49]번~ [52]번GENCTU, V, W, N

- [49] ~ [52]번 단자를 통해 피더 차단기 전류를 감지합니다.

- 계측 가능한 최소전류는 0.01 [Arms]이며, 최대전류는 10 [Arms], 피크타임은 1 [s]입니다.

- 사용하시는 CT (변류기 : Current Transformer)에 맞추어 설정을 변경해야 합니다.

메뉴 설정 위치	설정값	사용하는 단자
[피더반 환경설정]→[CT 비율]	사용자 설정	피더 차단기 전류 감지

6. 용어 정의

- 6.1. 소방부하
 - "소방시설 설치유지 및 안전관리에 관한 법률" 및 "건축법"에 근거하여 설치되는 소방설비 및 방화설비의 전력부하를 말합니다.
 - 소방부하는 사용자의 환경에 따라 한 개의 메인 차단기에서 단일부하로만 사용하는 경우도 있고, 여러 개의
 차단기에서 소방부하를 분기하여 사용하는 경우도 있습니다.
 - NeoGCP fFD에서는 과부하시 차단 가능한 소방부하인지 여부에 따라 두 가지로 소방부하를 구분하고 있습니다.

마스터 소방부하	상용전원의 공급중단 또는 화재상황이 발생하였을 때,
	항시 유지되어야 하는 소방부하 (과부하 시 차단되지 않는 소방부하)
슬레이브 소방부하	상용전원의 공급중단 또는 화재상황이 발생하였을 때,
	마스터 소방부하를 제외한 소방부하 (과부하 시 차단되는 소방부하)

6.2. 비상부하

- 상용전원의 공급중단 또는 화재상황이 발생하였을 때 가동되는 비상용 시설의 전력부하를 말합니다.

- 과부하 시 차단됩니다.

6.3. 소방전원 보존형 발전기

상용전원의 공급중단 또는 화재상황 중 과부하 발생 시 비상부하 및 슬레이브 소방부하를 우선적으로 차단하여
 소방부하를 보존할 수 있는 발전기를 말합니다.

6.4. 발전 차단기

- 발전 전압을 계통에 연계하기 위한 발전전원 차단기를 말합니다.

6.5. 피더 차단기

- NeoGCP fFD에서 제어하는 소방부하 또는 비상부하의 메인 차단기를 말합니다.

6.6. 서브 차단기

- 피더 차단기의 하위에 있는 MCCB를 말합니다.

6.7. 레벨 0 - 운전 상태

- 소방전원을 보존하기 전의 운전상태를 말합니다.
- 접점 또는 전압으로 발전기 운전 상태를 파악합니다.

- 6.8. 레벨 1 소방운전 상태
 - 전체부하가 설정치 이상으로 증가하였을 경우, 항시 유지되어야 하는 마스터 소방부하를 보존하는 운전상태를 말합니다.

6.9. 레벨 2 - 전원제어 상태

- 전체부하가 설정치 이상으로 증가하였을 경우, 과부하를 방지하기 위하여 우선순위가 낮은 서브차단기를
 차단하여 설정된 부하량 상태를 유지하는 운전상태를 말합니다.
- 6.10. 레벨 3 전원차단 상태
 - 전체부하가 설정치 이상으로 증가하였을 경우, 마스터 소방부하를 제외한 부하를 일시에 차단하는
 운전상태를 말합니다.
- 6.11. 마스터 fFD
 - NeoGCP fFD는 RS 485 통신으로 N대의 연결이 가능합니다.
 - 이때, 마스터 소방부하의 피더 차단기와 연결된 1대의 NeoGCP fFD를 마스터 fFD라 말합니다.

6.12. 슬레이브 fFD

- 마스터 fFD를 제외한 나머지 NeoGCP fFD를 슬레이브 fFD라 말합니다.
- 슬레이브 fFD에서 제어하는 피더차단기의 용도에 따라 소방 슬레이브와 비상 슬레이브로 구분됩니다.

〈용어정의예시〉

7. 사양 설정

7.1. 부하의 구분

- 전체부하를 소방부하와 비상부하로 구분한 후, NeoGCP fFD에서 제어해야 할 부하의 우선 순위를 사용자의 사양에 맞도록 적절하게 배치합니다.

7.2. 차단기의 종류

- 각 부하마다 적절한 차단기의 종류를 결정합니다.
- NeoGCP fFD는 총 8개의 출력접점을 가지고 있으며, 피더 차단기가 MCCB일 경우 차단기 차단 고장상황에서만 차단기 차단 접점이 출력됩니다.
- 차단기의 종류 별 사양은 아래와 같습니다.

구분		츠려저저	보조접점 용도	
		물릭엽염	[CLOSE]/[OPEN] LED 점등	고장상태 체크
	미사용	Х	Х	Х
피더 차단기	MCCB	1개(출력)	0	Х
	ACB	2개(입출력)	0	0
서브 차단기		1개(출력)	Х	Х

7.3. 출력접점 설정

- 마스터 fFD의 8개의 출력접점 중 아래의 4개 출력접점은 기본으로 사용하시기를 권장합니다.

① 피더 차단기 투입/차단 보조접점 총 2개

② 소방부하상태 접점 (상태표시)

③ 비상부하차단 접점 (상태표시)

예) 마스터 fFD 1대 + 슬레이브 fFD 1대 사용시 권장 출력접점을 제외한 사용가능 접점은 아래와 같습니다.

구분	기본접점	권장사용접점	서브차단기 사용가능 접점
마스터 fFD	8개	4개 (피더 차단기 ACB 투입/차단 및 상태접점 2개)	4개
슬레이브 fFD	8개	2개 (피더 차단기 ACB 투입/차단 접점)	6개

7.4. 소방운전 보전 제어 부하량 설정

- 사용자의 환경에 적절한 [소방부하량], [전원제어 합산부하], [전원차단 합산부하]를 설정합니다.

- 상세내용은 [8. 동작순서]을 참고하기 바랍니다.

8. 동작 순서

8.1. 상태 구분

- 상용전원의 차단 또는 화재 발생 시, 부하량에 따라 부하의 상태를 네 단계로 나누어 구분합니다.

- 상태별로 설정된 [소방부하량], [전원제어 합산부하], [전원차단 합산부하]를 초과하면 해당 상태로 전환됩니다.

순서	구분	내용	동작기준
레벨 0	운전	기본 운전 상태	접점 또는 전압
레벨 1	소방운전	소방전원 보존 상태	[소방부하량] 또는 접점
레벨 2	전원제어	서브차단기 제어 상태	[전원제어 합산부하]
레벨 3	전원차단	마스터 소방부하를 제외한 모든 부하의 제어 상태	[전원차단 합산부하] 또는 접점

8.1.1. 레벨 0 - 운전

- 발전기의 운전상태에 따라 소방전원 보존 제어 전의 기본 운전상태를 말합니다.

8.1.1.1. 마스터 fFD

- 마스터 fFD가 [운전] 상태가 되기 위한 입력은 아래와 같습니다.
- [발전기 상태입력 설정]이 [전압]으로 설정되었을 경우, 발전전압에 따라 [운전] 상태로 전환됩니다.
- [발전기 상태입력 설정]이 [접점]으로 설정되었을 경우 [①+②+③] 또는 [③+④] 중 접점 입력방법을 선택할 수 있습니다.
- [발전기 상태입력 설정]이 [접점+전압]으로 설정되었을 경우 [접점]을 우선으로 동작합니다.

번호	구분	내용	메뉴설정 위치
1	[UVR 접점]	발전기 운전 상태 감지	
2	[발전차단기 보조접점]	발전 차단기 상태 감지	[저저 이려(▷/\) 서저] , [저저 서저]
3	[피더 차단기 보조접점]	피더 차단기 상태 감지	
4	[피더반 제어 접점]	[운전] 상태 작동접점	

① [UVR 접점]으로 발전기의 운전 상태를 감지합니다. 발전기 기동에 관련된 접점이 입력되어야 합니다.

- [UVR 접점]이 차단될 경우, 설정된 지연시간 후 피더 차단기가 차단됩니다.

②[발전차단기 보조접점]으로 발전차단기의 상태를 감지합니다.

- [발전차단기 보조접점]이 차단될 경우, 즉시 피더 차단기가 차단됩니다.

③ [피더 차단기 보조접점] 으로 피더 차단기의 상태를 감지합니다.

- [피더 차단기 보조접점]이 입력되지 않을 경우, 소방전원 보존제어가 되지 않습니다.

④ [피더반 제어 접점] 입력 시 [운전] 상태로 전환합니다.

- [피더 차단기 보조접점]이 입력되지 않을 경우, 설정된 지연시간 후 피더 차단기가 차단됩니다.

8.1.1.2. 슬레이브 fFD

- 슬레이브 fFD는 마스터 fFD와 [10]번, [11]번 단자를 통해 RS 485 통신으로 [발전 차단기 보조접점]과 [UVR 접점] 신호를 받습니다.

- [피더 차단기 보조접점]은 사용자 선택사항입니다.

〈 결선도 예시 〉

- 8.1.2. 레벨 1 소방운전
 - [소방운전 모드 접점] 입력 또는 전체 부하가 [소방부하량] 이상으로 증가했을 경우, [소방부하 상태]로 전환됩니다.
 - [소방운전 모드 접점]과 [소방부하량] 중 접점을 우선으로 동작합니다.
 - [소방운전 모드 해제접점]이 입력되거나 [UVR 접점] 또는 [발전차단기 보조접점] 또는 [피더차단기 보조접점]이 차단될 경우 [소방운전] 상태가 해제됩니다.
 - 슬레이브 fFD가 [소방부하]로 설정되어 있을 경우, [소방부하량]은 마스터 fFD의 피더차단기 부하와 슬레이브 fFD의 피더차단기 부하가 합산됩니다.

구분	영향을 받는 메뉴	설정
	[제어 시퀀스 설정] → [소방운전상태 설정]	소방운전 상태 입력 방법 설정
마스터 fFD	[접점 입력(D/I) 설정] → [소방운전 모드 접점]	[소방접점] 사용시 사용자 설정
	[제어 시퀀스 설정] → [소방운전상태 부하]	[소방부하량] 사용 시 사용자 설정
슬레이브 fFD	[디바이스 설정] → [슬레이브 부하설정]	슬레이브 부하 종류 설정
출력 설정	[릴레이 출력(D/O) 설정] → 사용자 설정	[상태-소방부하상태] 접점 출력

- 8.1.3. 레벨 2 전원제어
 - [소방운전] 상태에서 전체 부하가 [전원제어 합산부하] 이상으로 부하가 증가하여 소방전원의 보존이 필요한 상태를 말합니다.
 - 설정된 [전원제어 체크시간] 간격으로 전체 부하가 [전원제어 합산부하] 가 될 때까지 우선 순위가 낮은 [서브차단기] 부터 순차적으로 차단됩니다.

구분	영향을 받는 메뉴	설정
마스터 fFD	[제어 시퀀스 설정] → [전원제어 합산부하]	사용자 설정
	[제어 시퀀스 설정] → [전원제어 체크시간]	사용자 설정

〈 전원제어 상태 서브차단기 차단 예시 〉

- 8.1.4. 레벨 3 전원차단
 - [소방운전] 상태에서 [강제부하제거 접점]이 입력되거나 전체 부하가 [전원차단 합산부하] 이상으로 부하가 증가하여 즉시 소방전원의 보존이 필요한 상태를 말합니다.
 - 설정된 [전원차단 체크시간] 이후 마스터 fFD의 피더 차단기를 제외한 모든 차단기를 차단합니다.
 - [전원차단 제어]에서 모든 서브차단기를 차단할 것인지 또는 슬레이브 fFD의 ACB 피더 차단기를 차단할 것 인지 선택할 수 있습니다.

구분	영향을 받는 메뉴	설정
	[제어 시퀀스 설정] → [전원차단 합산부하]	사용자 설정
마스터 (ED	[제어 시퀀스 설정] → [전원차단 체크시간]	사용자 설정
יןיביבן ורט	[제어 시퀀스 설정] → [전원차단 제어]	사용자 설정
	[접점 입력(D/I) 설정] → [강제부하제거 접점]	접점 사용시 사용자 설정
출력 설정 [릴레이 출력(D/O) 설정] → [상태-비상부하 상태]		출력 사용시 사용자 설정

8.2. 블록 [BLOCK]

- [블록] 상태에서는 피더 차단기의 제어가 되지 않고 메뉴설정만 가능합니다.

8.3. 수동 [MANUAL]

- [수동] 상태에서는 소방전원 보존제어가 되지 않습니다.
- [CLOSE], [OPEN] 버튼은 [발전차단기 보조접점], [UVR 접점] 또는 [피더반 제어 접점]의 입력여부와 상관없이 동작합니다.

	순서	내용		비고
1	운전방법 선택	[MODE] 버튼으로 [MANUAL] 선택		[MANUAL] LED 점등
	ラレニトフリ	MCCB	수동투입 / [OPEN] 버튼으로 차단	[차단기 보조접점 체크]
2	2 트이/카다	ACB	[CLOSE] 버튼으로 투입 / [OPEN] 버튼으로 차단	사용 시 LED 점등
	구비/지킨	미사용	동작안함	동작안함

8.4. 자동 [AUTO]

- [자동] 상태에서는 [UVR 접점], [발전 차단기 보조접점] 또는 [피더반 제어 접점]이 입력되어야만

피더 차단기가 투입됩니다.

	순서	내용	비고
1	운전방법 선택	[MODE] 버튼으로 [AUTO] 선택	[AUTO] LED 점등
2-	발전기 운전 상태 체크	[UVR 접점] 입력	[GRID] LED 점등
3	발전 차단기 상태 체크	[발전 차단기] 접점 입력	[GEN START] LED 점등
4	피더 차단기 투입	[차단기 투입 지연시간] 후 차단기 투입	[CLOSE] LED 점등
5	소방전원 보존 제어	전체 부하량 및 설정에 따라 부하제어	
6	피더 카다기 카다	[차단기 차단 지연시간] 후 차단기 차단	[UVR 접점] 차단 시
0	피나지간가지만	즉시 차단기 차단	[발전 차단기 보조접점] 차단 시

9. 메뉴 설정

9.1. 디바이스 설정

- NeoGCP fFD의 기본적인 정보 및 마스터 fFD와 슬레이브 fFD의 통신 정보들을 설정할 수 있습니다.

9.1.1. 마스터일 경우 설정

항목		설명	설정	
마스터/슬레이브 설정	TYPE	NeoGCP fFD의 구분	[마스터], [슬레이브]	
슬레이브 개수 설정	SLAVE	슬레이브 fFD의 개수 설정	0 ~ 16	
서브차단기 개수 설정	MCCB	서브차단기 개수 설정	0 ~ 16	
운전모드 설정	MODE	슬레이브 fFD의 운전 방법 설정	[버튼], [리모트]	
확장모듈 사용	EXT	확장모듈 사용유무 설정	[사용], [미사용]	
내님토시니다	П	마스터 fFD와 슬레이브 fFD간 통신 국번 설정	0~16	
비구승진	U	마스터 fFD는 0, 슬레이브 fFD는 1~16으로 설정		
내부통신	BVIID	마스터 뒤아아 수레이버 뛰어가 토시 소드 성정	9600, 19200,	
BAUDRATE	DAUD	비드니 II DA 글레이드 II D인 중인 국도 걸경 	38400	
내부통신 PARITY	PARITY	마스터 fFD와 슬레이브 fFD간 통신 패리티 설정	NONE, EVEN, ODD	

9.1.1.1. 마스터/슬레이브 설정 (TYPE)

- [마스터]로 설정합니다.
- 마스터 소방부하의 피더차단기와 연결되는 1대만 마스터 fFD이며 N개가 연결된 경우 나머지 N-1개는 슬레이브 fFD로 설정합니다.
- 1대의 NeoGCP fFD만 사용할 경우 [마스터]로 설정합니다.
- 9.1.1.2. 슬레이브 개수 설정 (SLAVE)
 - 1대의 마스터 fFD와 연결되는 슬레이브 fFD의 개수를 설정합니다.
- 9.1.1.3. 서브차단기 개수 설정 (MCCB)
 - 마스터 fFD와 연결되는 서브차단기 개수를 설정합니다.
 - 슬레이브 fFD는 해당 기기에서 각각 설정하여야 하기 때문에 마스터 fFD에 연결된 서브차단기만 기입합니다.
 - 예) 마스터 fFD의 서브차단기 4개, 슬레이브 fFD의 서브차단기 6개, 총 10개의 서브차단기를 사용하더라도 마스터 fFD에 연결된 4개의 서브차단기 개수만 입력

9.1.1.4. 내부 통신 설정

- 마스터 fFD의 내부통신 ID는 0으로 설정해야 하며, 슬레이브 fFD와 통신속도 및 패리티와 똑같이 설정해야 합니다.

9.1.2. 슬레이브일 경우 설정

항목		설명	설정
마스터/슬레이브 설정	TYPE	NeoGCP fFD의 종류 설정	[마스터], [슬레이브]
슬레이브 부하 섴정			[비상부하],
	20/12		[소방부하]
서브차단기 개수 설정	MCCD	서브차단기 개수 설정	0 ~ 16
운전모드 설정	MODE	슬레이브 fFD의 운전 방법 설정	[버튼], [리모트]
확장모듈 사용	EXT	확장모듈 사용유무 설정	[사용], [미사용]
		마스터 fFD와 슬레이브 fFD간 통신 국번 설정	0~16
비구공간ル	ש	마스터 fFD는 0, 슬레이브 fFD는 1~16으로 설정	0 10
내부통신	BVIID	마스터 FED와 스레이브 FED가 토시 소드 서저	9600, 19200,
BAUDRATE	DAUD	이프이미 0시 길데이드 미 0인 당신 국도 같당	38400
내부통신 PARITY	PARITY	마스터 fFD와 슬레이브 fFD간 통신 패리티 설정	NONE, EVEN, ODD

9.1.2.1. 마스터/슬레이브 설정 (TYPE)

- [슬레이브]로 설정합니다.

9.1.2.2. 슬레이브 부하 설정 (LOAD)

- 슬레이브 fFD의 피더차단기가 소방부하인지 비상부하인지 설정합니다.

- 소방부하로 설정된 경우, [소방부하량]에 합산되어 [소방운전] 상태에 영향을 끼칩니다.

9.1.2.3. 서브차단기 개수 설정 (MCCB)

- 슬레이브 fFD와 연결되는 서브차단기 개수만 설정합니다.

9.1.2.4. 운전모드 설정 (MODE)

- 슬레이브 fFD의 운전 방법을 [버튼], [리모트] 중 설정합니다.

9.1.2.5. 확장모듈 사용 (EXT)

- 마지막 슬레이브 fFD에 확장모듈을 추가로 설치할 수 있습니다.
- D/O의 추가가 필요할 경우 자사에서 별도 구매를 하실 수 있습니다.
- 확장모듈의 출력접점은 8개 입니다.

9.1.2.6. 내부 통신 설정

- 슬레이브 fFD의 내부통신 ID를 1~16까지 우선순위를 두어 설정합니다.
- 내부통신 ID의 숫자가 높을수록 [전원제어] 상태에서 우선순위가 낮아집니다.
- 마스터 fFD의 통신속도 및 패리티와 똑같이 설정해야 합니다.

9.2. 피더반 환경 설정

- 피더 차단기의 기본적인 정보 및 시간 설정을 할 수 있습니다.

항목		설명	설정
정격 출력	Р	피더 차단기 정격 출력 입력	0 ~ 5000 [kW]
정격 전압	V	피더 차단기 정격 전압 입력	110 ~ 6600 [V]
정격 전류	I	피더 차단기 정격 전류 입력	5 ~ 9999 [A]
지락 전류	GRI	피더 차단기 지락 전류 입력	5 ~ 9999 [A]
PT 비율	PT	PT 비 입력	1.00 ~ 99.99
CT 비율	СТ	CT 비 입력	5/1 ~ 9999/5
지락 CT 비율	ZCT	ZCT 비 입력	5/1 ~ 9999/5
차단기 설정	TYPE	차단기 종류 설정	[미사용] / [MCCB] / [ACB]
차단기 보조접점 체크	AUX	차단기 보조접점 사용 설정	[사용] / [미사용]
발전차단기 연동(수동시)	MAIN	1차측 투입시 2차측 투입 불가	[사용] / [미사용]
버튼음 설정	BEEP	버튼음 사용 설정	[사용] / [미사용]
경고음 출력시간	HORN	경고음 출력 시간 설정	0 ~ 600 [s]
백라이트 유지시간	LIGHT	백라이트 유지시간 설정	0 ~ 600 [s]
날짜 설정	DATE	날짜 설정	
시간 설정	TIME	시간 설정	00:00 ~ 23:59
시간 보정	CLOCK	시간 보정 설정	-31 ~ +31

9.2.1. 정격 출력 (P)

- 피더 차단기의 정격출력을 설정합니다.

9.2.2. 정격 전압 (V)

- 피더 차단기의 정격전압을 설정합니다.

9.2.3. 정격 전류 (I)

- 피더 차단기의 정격전류를 설정합니다.

9.2.4. 지락 전류 (GRI)

- 피더 차단기의 지락전류를 설정합니다.

9.2.5. PT 비율 (PT)

- PT (변압기 : Potential Transformer)의 비율을 설정합니다.

- 피더 차단기의 정격전압이 AC 550 [Vrms]를 초과할 경우 PT를 사용해야 하며, PT 1차 전압이 정격전압이 됩니다. 예시) PT 1차 전압이 6600 [V], PT 2차 전압이 110 [V]일 경우

영향을 받는 메뉴	설정
[피더반 환경 설정] → [정격 전압]	6600 [V]
[피더반 환경 설정] → [PT 비율]	60.0 (= 6600/110)

9.2.6. CT 비율 (CT)

- CT (변류기 : Current Transformer)의 비율을 설정합니다.

9.2.7. 지락 CT 비율 (ZCT)

- ZCT (영상 변류기: Zero Current Transformer)의 비율을 설정합니다.

9.2.8. 차단기 설정 (TYPE)

- 피더 차단기의 종류를 설정합니다.

- [AUTO] 상태에서 피더 차단기의 종류가 ACB일 경우 설정된 투입/차단 지연시간 후 차단기가 투입/차단되며,

[차단기 보조접점 체크] → [사용] 일 경우, 보조접점으로 고장여부 및 [OPEN], [CLOSE]

LED의 점등여부를 판단합니다.

설정	영향을 받는 메뉴	내용
	[제어 시퀀스 설정] → [차단기 투입 지연시간]	[신호-차단기 투입] 출력 지연시간
	[제어 시퀀스 설정] → [차단기 차단 지연시간]	[신호-차단기 차단] 출력 지연시간
	[릴레이 출력(D/O) 설정] → [신호-차단기 투입]	사용자 설정
ACD	[릴레이 출력(D/O) 설정] → [신호-차단기 차단]	사용자 설정
	[피더반 환경 설정] → [차단기 보조접점 체크]	사용, 미사용
	[MANUAL] 상태에서 [CLOSE], [OPEN] 버튼	[신호-차단기 투입/차단] 즉시 출력

- 피더 차단기의 종류가 MCCB일 경우 차단기 차단 고장상황 발생 시에만 차단기가 차단되며,

[차단기 보조접점 체크] → [사용] 일 경우, 보조접점으로 [OPEN], [CLOSE] LED의 점등여부만 판단합니다.

설정	영향을 받는 메뉴	내용
	[릴레이 출력(D/O) 설정] → [신호-차단기 차단]	사용자 설정
MCCB	[피더반 환경 설정] → [차단기 보조접점 체크]	사용, 미사용
	[MANUAL] 상태에서 [OPEN] 버튼	[신호-차단기 차단] 즉시 출력

9.2.9. 차단기 보조접점 체크 (AUX)

- 피더 차단기의 보조접점 사용 유무를 설정합니다.

- [피더차단기 보조접점]이 입력되지 않으면 소방전원 보존 제어가 활성화되지 않습니다.

9.2.10. 발전차단기 연동(수동시)

- 발전차단기 보조접점이 인가되었을 때 피더 차단기의 투입 가능 여부를 설정합니다.

- [사용] 설정 시 발전차단기 보조접점이 인가되었을 때 피더 차단기 투입이 불가능합니다.

9.2.11. 버튼음 설정 (BEEP)

- 버튼을 누를 때 버튼음의 사용 유무를 설정합니다.

9.2.12. 경고음 출력시간 (HORN)

- 고장 상황 발생 시 내부부저 출력시간 및 [신호-알람 부저]의 접점출력 지속시간을 설정합니다.
- 0으로 설정할 경우 내부부저 출력 및 [신호-알람 부저]의 접점출력이 고장 상황의 해제 및 [ALARM] 버튼을 누를 때까지 지속됩니다.

영향을 받는 메뉴	설정
[릴레이출력(D/O) 설정] → [신호-알람 부저]	부저를 사용할 경우 접점출력 지속시간

9.2.13. 백라이트 유지시간 (LIGHT)

- LCD의 백라이트 유지시간을 설정합니다.

- 0 또는 운전중에는 백라이트가 꺼지지 않습니다.

9.2.14. 날짜 설정 (DATE)

- 날짜를 설정합니다.

9.2.15. 시간 설정 (TIME)

- 시간을 설정합니다.

9.2.16. 시간 보정 (CLOCK)

- 시간 진행이 빠르거나 늦을 경유 시간을 보정할 때 설정합니다.

9.3. 접점입력(D/I) 설정

- NeoGCP fFD 제어에 필요한 디지털 입력접점(D/I)을 [접점01 설정]에서 [접점10 설정]까지 설정할 수 있습니다.

76		서며	종류	지연시간	고장등급	메시지
TT		20	(TYPE)	(DELAY)	(ALARM)	(TXET)
	고장접점	사용자 고장접점			[[]] [] []	
	고장접점 (운전중)	사용자 고장접점(운전중)				수정가능
고장	고장접점 (정지중)	사용자 고장접점(정지중)			[비사당]	
접점	비상정지 스위치	비상정지			[ˈƏːːː] [⁊ŀɕŀ]	
	지락과전류 접점	지락과전류			[시간]	
	발전기 고장 접점	발전기 고장 접점				
	피더차단기 보조접점	피더차단기 상태 파악				
	발전차단기 보조접점	발전차단기 상태 파악				
	UVR 접점	발전기 기동여부 파악				
	피더반 제어 접점	[운전] 상태 입력 접점				
	강제부하제거 접점	[전원차단] 상태 입력 접점	[N/O]	0 ~ 25		
	소방운전모드 접점	[소방운전] 상태 입력 접점	[N/C]	[초]		
	소방운전모드 해제접점	[소방운전] 상태 해제 접점				고정
상태	블록모드 접점	[BLOCK] 상태 입력 접점				
접점	수동모드 접점	[MANUAL] 상태입력접점				
	자동모드 접점	[AUTO] 상태 입력 접점				
	차단기 투입 접점	차단기 투입 접점				
	차단기 차단 접점	차단기 차단 접점				
	고장해제 접점	고장해제 접점				
	소방운전 시험모드	[소방운전] 시험 상태 접점				
	소방부하 증가접점	유효전력 증가 접점]			
	소방부하 감소접점	유효전력 감소 접점]			

9.3.1. 고장접점

- 사용자의 고장접점으로 사용합니다.

- 접점 입력 시 설정된 지연시간 후 고장등급에 따라 피더 차단기의 운전상태가 전환됩니다.
- 경고 메세지를 수정할 수 있습니다.
- 설정: 타입(N/O, N/C), 지연시간(0.0 ~ 25.0 [초]), 고장등급(미사용, 차단, 경고), 메시지(TEXT)

9.3.2. 고장접점(운전중)

- [발전차단기 보조접점] 또는 [피더반 제어 접점]이 입력된 상태에서 [고장접점(운전중)] 접점이 입력되면
 설정된 지연시간 후 고장등급에 따라 피더 차단기의 운전상태가 전환됩니다.
- 고장 메세지를 수정할 수 있습니다.
- 설정:타입(N/O, N/C), 지연시간(0.0~25.0 [초]), 고장등급(미사용, 차단, 경고), 메시지(TEXT)

9.3.3. 고장접점(정지중)

- [발전차단기 보조접점] 또는 [피더반 제어접점]이 차단된 상태에서 [고장접점(정지중)] 접점이 입력되면,
 설정된 지연시간 후 고장등급에 따라 피더 차단기의 운전상태가 전환됩니다.

- 고장 메세지를 수정할 수 있습니다.
- 설정: 타입(N/O, N/C), 지연시간(0.0~25.0 [초]), 고장등급(미사용, 차단, 경고), 메시지(TEXT)
- 9.3.4. 비상정지 스위치
 - 비상정지 스위치 접점으로 사용합니다.
 - 접점 입력 시 피더 차단기가 즉시 차단됩니다.
 - 설정: 타입(N/O, N/C), 지연시간(0.0 ~ 25.0 [초]), 고장등급(미사용, 차단, 경고)

9.3.5. 지락과전류 접점

- 지락과전류 계전기의 접점으로 사용합니다.
- 접점 입력 시 설정된 지연시간 후 고장등급에 따라 피더 차단기의 운전상태가 전환됩니다.
- 설정: 타입(N/O, N/C), 지연시간(0.0~25.0 [초]), 고장등급(미사용, 차단, 경고)

9.3.6. 발전기 고장 접점

- 발전기 고장 접점으로 사용합니다.
- 접점 입력 시 설정된 지연시간 후 고장등급에 따라 피더 차단기의 운전상태가 전환됩니다.
- 설정 : 타입(N/O, N/C), 지연시간(0.0 ~ 25.0 [초]), 고장등급(미사용, 차단, 경고)

9.3.7. 피더차단기 보조접점

- 피더 차단기 보조접점으로 사용합니다.
- [CLOSE], [OPNE] LED 점등 및 피더 차단기의 고장상태 확인에 사용되며, 접점이 입력되지 않으면 소방전원 보존 제어가 활성화되지 않습니다.
- 설정 : 타입(N/O, N/C)
- 9.3.8. 발전차단기 보조접점
 - 발전 차단기 보조접점으로 사용합니다.
 - 접점 차단 시 부하운전 중이더라도 피더 차단기가 즉시 차단됩니다.
 - [피더반 제어 접점]이 입력되어 있을 경우 동작하지 않습니다.
 - 설정 : 타입(N/O, N/C)
- 9.3.9. UVR 접점
 - 발전기 기동상태 접점으로 사용합니다.
 - 접점 차단 시 설정된 지연시간 후 피더 차단기가 차단됩니다.

- [피더반 제어 접점] 이 입력되어 있을 경우 동작하지 않습니다.
- 설정 : 타입(N/O, N/C)
- 9.3.10. 피더반 제어 접점
 - 피더 차단기를 즉시 제어할 수 있는 입력 접점으로 사용합니다.
 - 접점 입력 시 [발전차단기 보조접점]과 [UVR 접점]이 입력된 상태로 인식하여 [운전] 상태로 전환됩니다.
 - 접점 차단 시 [발전차단기 보조접점]이 차단된 상태로 인식하여 피더 차단기가 즉시 차단됩니다.
 - 설정 : 타입(N/O, N/C)
- 9.3.11. 강제부하제거 접점
 - [전원차단] 상태 입력 접점으로 사용합니다.
 - 설정 : 타입(N/O, N/C)

영향을 받는 메뉴	설정
[제어 시퀀스 설정] → [전원차단 체크시간]	사용자 설정
[제어 시퀀스 설정] → [전원차단 제어]	사용자 설정
[릴레이 출력(D/O) 설정] → [상태-비상부하 상태]	출력 사용시 사용자 설정

9.3.12. 소방운전모드 접점

- [소방운전] 상태 입력 접점으로 사용합니다.

- 설정 : 타입(N/O, N/C)

영향을 받는 메뉴	설정
[제어 시퀀스 설정] → [소방운전상태 설정]	[소방접점] 또는 [소방접점+소방부하량]

9.3.13.소방운전모드 해제접점

- [소방운전] 상태 해제 접점으로 사용합니다.

- 설정 : 타입(N/O, N/C)

영향을 받는 메뉴	설정
[제어 시퀀스 설정] → [소방운전상태 설정]	[소방접점] 또는 [소방접점+소방부하량]

9.3.14. 블록모드 접점

- [블록] 상태 입력 접점으로 사용합니다.
- 설정 : 타입(N/O, N/C)
- 9.3.15. 수동모드 접점
 - [수동] 상태 입력 접점으로 사용합니다.
 - 설정 : 타입(N/O, N/C)

- 9.3.16. 자동모드 접점
 - [자동] 상태 입력 접점으로 사용합니다.
 - 설정 : 타입(N/O, N/C)
- 9.3.17. 차단기 투입 접점
 - 피더 차단기 투입 접점으로 사용합니다.
 - 접점 입력 시 [신호-차던가 투입] 접점이 출력될 수 있는 조건일 때 접점이 출력됩니다.
 - 설정 : 타입(N/O, N/C)
- 9.3.18. 차단기 차단 접점
 - 피더 차단기 차단 접점으로 사용합니다.
 - 접점 입력 시 차단기가 차단 됩니다.
 - 설정 : 타입(N/O, N/C)
- 9.3.19. 고장 해제 접점
 - 고장 해제 접점으로 사용합니다.
 - 고장상황 발생 후 해제되었을 경우, 접점 입력 시 고장상황이 초기화됩니다.
 - 고장상황 발생 후 해제되지 않았을 경우, 접점 입력 시 부저만 초기화됩니다.
 - 설정 : 타입(N/O, N/C)

9.3.20. 소방운전 시험모드, 소방부하 증가접점, 소방부하 감소접점

- 소방전원 보존 제어 시험 운전 시 사용합니다.

- 설정 : 타입(N/O, N/C)

- 아래의 신호를 순차적으로 입력한 후, 가상의 조건을 만들어 소방전원 보존 제어 상태를 시험할 수 있습니다.

입력 신호	상태
[UVR 접점], [발전차단기 보조접점] 또는 [피더반 제어접점]	[운전] 상태로 전환
[차단기 보조접점]	소방전원 보존 제어 상태로 전환
[소방운전 시험모드]	가상의 380 [V]가 입력됨
[소방부하 증가접점]	한번의 펄스신호로 전류값 증가함
[소방부하 감소접점]	한번의 펄스신호로 전류값 감소함

9.4. 릴레이출력(D/O) 설정

- 디지털 출력접점(D/O)을 설정할 수 있습니다.

	구분	D/O 목록	내용
--	----	--------	----

	신호-차단기 투입	차단기 투입 출력
	신호-차단기 차단	차단기 차단 출력
신호 출력	신호-알람 부저	알람시 부저출력
	신호-알람 해제	알람 해제 시 출력
	신호-서브차단기 차단 01~16	서브차단기 차단 출력
	상태-한전	상용전원 상태 출력
	상태-정전	발전전원 상태 출력
	상태-운전중	발전기 [운전] 상태 출력
	상태-소방부하상태	[소방운전] 상태 출력
	상태-비상부하상태	[전원차단] 상태 출력
상태 출력	상태-블록모드	[블록] 상태 출력
	상태-자동운전모드	[자동] 상태 출력
	상태-수 동운 전모드	[수동] 상태 출력
	상태-모든고장	모든 고장상황 발생 시 출력
	상태-경고장	고장등급 경고 발생 시 출력
	상태-차단고장	고장등급 차단 발생 시 출력
	고장-과전압	과전압 고장 발생 시 출력
	고장-저전압	저전압 고장 발생 시 출력
고장 출력	고장-과전류	과전류
	고장-지락과전류	지락과전류
	고장-고장접점1~18	사용자 고장접점

9.4.1. 신호-차단기 투입

- 피더 차단기 투입 출력 접점으로 사용합니다.

출력 조건	설정
[운전] 상태일 것	사용자 설정
차단고장 없을 것	사용자 설정
차단기 종류 ACB일 것	출력 사용시 사용자 설정

- [자동] 상태에서 [차단기 종류]가 ACB일 경우, [차단기 투입 지연시간] 후 접점이 출력됩니다.

- [수동] 상태에서 [운전] 상태와 상관없이 [차단기 종류]가 ACB일 경우, [CLOSE] 버튼으로 접점을 출력할

수 있습니다.

영향을 받는 메뉴	내용
[피더반 환경 설정] → [차단기 설정] → [미사용]	출력 안됨
[제어 시퀀스 설정] → [차단기 투입 지연시간]	자 동운 전에서 지연시간
[CLOSE] 버튼	수동운전에서 즉시 출력

9.4.2. 신호-차단기 차단

- 피더 차단기 차단 출력 접점으로 사용합니다.

- [자동] 상태에서 [차단기 종류]가 ACB일 경우, 피더 차단기 차단 상황이나 [UVR 접점] 차단 시

설정된 지연시간 후 접점이 출력됩니다.

- [자동] 상태에서 [차단기 종류]가 ACB일 경우, [발전차단기 보조접점] 차단 시 즉시 출력됩니다.
- [자동] 상태에서 [차단기 종류]가 MCCB일 경우, 차단 경고상황 발생 시 즉시 출력됩니다.
- [수동] 상태에서 [차단기 종류]와 상관없이, [OPEN] 버튼으로 접점을 즉시 출력할 수 있습니다.

영향을 받는 메뉴	내용
[피더반 환경 설정] → [차단기 설정] → [미사용]	출력 안됨
[제어 시퀀스 설정] → [차단기 차단 지연시간]	자 동운 전에서 지연시간
[CLOSE] 버튼	수동운전에서 즉시 출력

9.4.3. 신호-알람 부저

- 고장 상황 발생 시 알람부저 출력 접점으로 사용합니다.

- [경고음 출력시간] 동안 접점이 출력되며, 0으로 설정 시 수동으로만 알람 리셋이 가능하게 됩니다.

영향을 받는 메뉴	설정	내용
[피더반 환경 설정] → [버튼음 설정] → [경고음 출력시간]	0~600 [초]	설정시간 동안 접점 출력

9.4.4. 신호-알람 해제

- 고장해제 출력 접점으로 사용합니다.

- [고장 해제 접점]이 입력되거나, [RESET] 버튼이 작동하는 동안 출력됩니다.

9.4.5. 신호-서브차단기 차단 01~16

- [전원차단] 및 [전원제어] 상태에서 서브차단기 차단 출력 접점으로 사용합니다.

구분	영향을 받는 메뉴	설정
	[제어 시퀀스 설정] → [전원제어 합산부하]	사용자 설정
	[제어 시퀀스 설정] → [전원제어 체크시간]	사용자 설정
마스터 fFD	[제어 시퀀스 설정] → [전원차단 합산부하]	사용자 설정
	[제어 시퀀스 설정] → [전원차단 체크시간]	사용자 설정
	[제어 시퀀스 설정] → [전원차단 제어]	사용자 설정
	[접점 입력(D/I) 설정] → [강제부하제거 접점]	접점 사용시 사용자 설정

9.4.6. 상태-한전

- 상용전원 상태 출력 접점으로 사용합니다.

- [UVR 접점] 차단 시 출력됩니다.

9.4.7. 상태-정전

- 발전전원 상태 출력 접점으로 사용합니다.

- [UVR 접점] 입력 시 출력됩니다.

- 9.4.8. 상태-운전중
 - [운전] 상태 출력 접점으로 사용합니다.
 - [발전차단기 보조접점] 입력 시 출력됩니다.
- 9.4.9. 상태-소방부하 상태
 - [소방운전] 상태 출력 접점으로 사용합니다.
- 9.4.10. 상태-비상부하 상태
 - [전원차단] 상태 출력 접점으로 사용합니다.
- 9.4.11. 상태-블록모드, 수동운전모드, 자동운전모드, 비상운전모드
 - 각 운전 상태 별 출력 접점으로 사용합니다.

9.4.12. 상태-모든고장

- 고장상황 발생 시 출력 접점으로 사용합니다.
- 고장상황이 해제되었을 경우 출력이 차단됩니다.

9.4.13. 상태-경고장

- 고장등급이 경고인 상황 발생 시 출력 접점으로 사용합니다.
- 고장상황이 해제되었을 경우 출력이 차단됩니다.

9.4.14. 상태-차단고장

- 고장등급이 차단인 상황 발생 시 출력 접점으로 사용합니다.
- 고장상황이 해제되었을 경우 출력이 차단됩니다.

9.4.15. 고장-과전압, 저전압, 과전류, 지락과전류

- 각 고장상황 발생 시 해당 출력 접점으로 사용합니다.
- 고장상황이 해제되었을 경우 출력이 차단됩니다.
- 9.4.16. 고장접점1~10
 - 사용자의 고장접점으로 사용합니다.
 - 사용자의 고장고상황이 해제되었을 경우 출력이 차단됩니다.

9.5. 제어 시퀀스 설정

- 피더 차단기 및 소방전원 보전 제어 방법을 설정할 수 있습니다.

9.5.1. 마스터일 경우 설정

항목		설명	설정
차단기 투입 지연시간	CLOSE	[자동] 상태 피더 차단기 투입 전 지연시간	0 ~ 60 [초]
차단기 차단 지연시간	OPEN	[자동] 상태피더차단기차단전지연시간	0 ~ 60 [초]
소방운전상태 설정	MODE	[소방운전] 상태 전환 방법 설정	[소방접점+소방부하량] [소방부하량] [소방접점]
소방운전 상태 부하	SET	[소방운전] 상태 전환 부하량 설정	0 ~ 9999 [kW]
소방운전 상태 체크시간	DELAY	[소방운전] 상태 전환 지연시간	0 ~ 600 [초]
전원제어 합산부하	SET	[전원제어] 상태 전환 부하량 설정	0 ~ 9999 [kW]
전원제어 체크시간	DELAY	[전원제어] 상태 전환 지연시간	1 ~ 600 [초]
서브차단기 출력유지시간	HOLD	서브차단기 차단 신호 유지시간	0 ~ 600 [초]
전원차단 합산부하	SET	[전원차단] 상태 전환 부하량 설정	0 ~ 9999 [kW]
전원차단 체크시간	DELAY	[전원차단] 상태 전환 지연시간	0 ~ 600 [초]
전원차단 제어	CONTROL	[전원차단] 상태 부하 차단 방법 설정	[서브차단기 차단] [슬레이브 ACB 차단]
발전기 상태입력 설정	MODE	[운전] 상태가 되기 위한 입력 설정	[접점+전압], [접점], [전압]

9.5.2. 슬레이브일 경우 설정

항목		설명	설정
차단기 투입 지연시간	CLOSE	[자동] 상태 피더 차단기 투입 전 지연시간	0 ~ 60 [초]
차단기 차단 지연시간	OPEN	[자동] 상태 피더 차단기 차단 전 지연시간	0 ~ 60 [초]

9.6. 보호동작 설정

- 보호동작에 대한 설정을 할 수 있습니다.

- 과전압, 과전류, 지락과전류의 경우 정한시와 반한시가 같이 동작하며, 순시 사용 설정시 중복동작합니다.

항목		설명	설정
	정한시	과전압 레벨부터 동작	0.5 ~ 20.0 [초]
과저아	반한시	과전압 레벨부터 동작 반한시 특성곡선 참고	
피한비	스지	저겨저아이 120% 보터 도자	200ms 이내
	군시	영덕선합의 130% 구덕 중덕	(입력 전압이 클수록 시간 감소)
	정한시	과전류 레벨부터 동작 0.5 ~ 20.0 [초]	
고니거 큰	반한시	정격전류의 100% 부터 동작	반한시 특성곡선 참고
피안ㅠ	수지	정격전류의 200% 부터 동작 200ms 이내 (입력 전류가 클수록 시간 감소)	200ms 이내
	군지		
	정한시	지락과전류 레벨부터 동작	0.5 ~ 20.0 [초]
지락과전류	반한시	지락과전류의 100% 부터 동작	반한시 특성곡선 참고
	스시	지라과정르이 200% 브터 도자	200ms 이내
	군지	시국피현규의 200 % 구너 중국 	(입력 전류가 클수록 시간 감소)

항목		설명	설정
	SET	과전압 레벨 설정	100 ~ 150 [%]
	DELAY	과전압 정한시 지연시간 설정	0.5 ~ 20.0 [초]
과전압	LEVER	과전압 반한시 레버 설정	0.05 ~ 1.0
	CONST	과전압 순시 사용 설정	사용, 미사용
	ALARM	과전압 보호등급	미사용, 경고, 차단
	SET	저전압 레벨 설정	50 ~ 100 [%]
저전압	DELAY	저전압 지연시간 설정	0.5 ~ 20.0 [초]
	ALARM	저전압 보호등급	미사용, 경고, 차단
	SET	과전류 레벨 설정	101 ~ 200 [%]
	DELAY	과전류 지연시간 설정	0.5 ~ 20.0 [초]
과전류	LEVER	과전류 동작특성 레버 설정	0.05 ~ 1.0
	CONST	과전류 순시 사용 설정	사용, 미사용
	ALARM	과전류 보호등급	미사용, 경고, 차단
	SET	지락과전류 레벨 설정	101 ~ 200 [%]
	DELAY	지락과전류 지연시간 설정	0.5 ~ 20.0 [초]
지락과전류	LEVER	지락과전류 동작특성 레버 설정	0.05 ~ 1.0
	CONST	지락과전류 순시 사용 설정	사용, 미사용
	ALARM	지락과전류 보호등급	미사용, 경고, 차단
과주파수	SET	과주파수 레벨 설정	100 ~ 150 [%]
	DELAY	과주파수 지연시간 설정	0.5 ~ 20.0 [초]
	ALARM	과주파수 보호등급	미사용, 경고, 차단
	SET	저주파수 레벨 설정	50 ~ 100 [%]
저주파수	DELAY	저주파수 지연시간 설정	0.5 ~ 20.0 [초]
	ALARM	저주파수 보호등급	미사용, 경고, 차단

9.7. 직렬 통신 설정

- NeoGCP fFD는 두 개의 통신 포트를 가지고 있습니다.

- D-SUB 9핀은 UART 통신 포트로서 설정이 고정되어 있습니다.

항목		설명	설정
UART ID	ID	UART 포트 국번 설정	002
UART	BALID	니ADT 피티 토시소드 서저	9600
BAUDRATE	DAOD		3000
UART PARITY	PARITY	UART 포트 패리티 설정	EVEN

9.8. 센싱 게인 설정

- 전압, 전류의 게인값을 조절해서 표기값을 조절할 수 있습니다.

항목		설명	설정
U-V 전압 게인	PT-UV	발전 U-V 선간전압 게인 설정	0.001 ~ 9.999
V-W 전압 게인	PT-VW	발전 V-W 선간전압 게인 설정	0.001 ~ 9.999
₩-U 전압 게인	PT-WU	발전 W-U 선간전압 게인 설정	0.001 ~ 9.999
U 전류 게인	CT-U	발전 U 전류 게인 설정	0.001 ~ 9.999
V 전류 게인	CT-V	발전 V 전류 게인 설정	0.001 ~ 9.999
W 전류 게인	CT-W	발전 W 전류 게인 설정	0.001 ~ 9.999
지락 전류 게인	CT-GR	지락전류 게인 설정	0.001 ~ 9.999

9.9. 보호동작/소방출력 테스트

- 보호동작 및 소방출력을 테스트를 실행할 수 있습니다.

- 보호동작 테스트의 설정은 [보호동작 설정]에서 변경할 수 있습니다.

항목	설명	설정
과전압 테스트	과전압(OVR) 테스트	
저전압 테스트	저전압(UVR) 테스트	
과전류 테스트	과전류(OCR) 테스트	[보호동작 설정]에서 변경
지락과전류 테스트	지락과전류(OCGR) 테스트	
과속도 테스트	과속도(OVER SPEED) 테스트	

- 소방출력 테스트의 경우 [ENTER] 버튼으로 가상의 전압을 투입 및 차단, [◀], [▶] 버튼으로 가상의 전류를 감소, 증가 시킬 수 있습니다.

9.10. 제어이력 확인

- 접점 입력 및 릴레이 출력에 변화가 생겼을 때 시간순서에 따라 최대 150개까지 확인이 가능합니다.

9.11. 고장이력 확인

- 고장상황 발생 시 모든 운전정보들을 시간순서에 따라 최대 10개까지 확인이 가능합니다.

9.12. 컨트롤러 점검

- 제품의 정상작동 유무를 확인하기 위한 정보들을 확인할 수 있습니다.

- 제품의 펌웨어 버전 및 제품번호 확인이 가능합니다.

- 통신 RX, TX 상태 체크가 가능합니다.

- 아날로그 입력값 및 디지털 입출력값 확인이 가능합니다.

10. 고장 항목

하모		고장등급		지연시간	저요 시키스	
07	미사용	경고	차단		~~~~	
고나저아	0	0	0	설정	상시	
파신입	발전전압이고	바전압 설정치 이	상으로 검출되	었을 때		
거지아	0	0	0	설정	운전중	
시간법	발전전압이 져	허전압 설정치 이	하로 검출되었	[을 때		
과정르	0	0	0	설정	상시	
비안ㅠ	발전전류가고	바전류 설정치 0	상으로 검출되	었을 때		
	0	0	0	설정	상시	
지락과전류	지락전류가 설정치 이상으로 검출되었을 때					
	또는 지락과전류 접점이 입력되었을 때					
비사저기			0	즉시	상시	
-10'0'N	비상정지로 설정된 접점이 입력되었을 때					
카다기 이자도		0		즉시	상시	
시간기 포력증	차단기 보조접점이 정상적으로 입력되지 않았을 때					
바저기 고자	0	0	0	설정	상시	
글인지 <u>고</u> 영	발전기 고장 접점이 입력되었을 때					
내브 토시코자		0		즉시	상시	
에구 중 근 포 경	마스터 fFD와 슬레이브 fFD의 내부통신이 안되고 있을 때					
<u> </u> 화자미듀토시 고자		0		즉시	상시	
40725070	슬레이브 fFD와 확장모듈의 내부통신이 안되고 있을 때					

※ ◎ : 고정항목 ○ : 선택 가능항목

11. 통신 프로토콜 - MODBUS

- NeoGCP fFD는 마스터 fFD의 D-sub 9핀 단자를 통해 외부 모니터링을 할 수 있습니다.

- D-sub 9핀은 UART 통신을 지원하기 때문에 RS485 통신을 사용하실 경우 별도의 UART to RS485 컨버터를

사용하셔야 합니다.

- 슬레이브 fFD의 데이터를 요청할 때는 마스터 fFD와 별도로 데이터를 요청해야 합니다.

예) 마스터 fFD의 데이터 요청시 : 마스터 요청 - 마스터 요청 - 마스터 요청~

예) 마스터 fFD와 슬레이브 fFD의 데이터 요청시 : 마스터 요청 - 슬레이브 요청 - 마스터 요청 - 슬레이브 요청~

구분	설정
프로토콜 종류	MODBUS RTU
국번 설정	0 ~ 255
Baudrate	9600, 19200, 38400 [bps]
Parity	Even, Odd, None
Data Bit	8 [bit]
Stop Bit	1 [bit]
지원 Function Code	Request(04h), Command(05h)
지원 Exception Code	Illegal Function(01h), Illegal Address(02h), Illegal Data Value(03h)
프레임 종료 Silent Interval	5 [ms]

11.1. 마스터 Request (04h)

ADDRESS	DATA	TYPE	SCALE
01	시리얼 번호	16bit SIGNED INT	1
02	프로그램 버전	16bit SIGNED INT	/100
03	발전 L-L 전압 평균	16bit SIGNED INT	1
04	발전 L-N 전압 평균	16bit SIGNED INT	1
05	발전 전류 평균	16bit SIGNED INT	1
06	발전 U-V 전압 [V]	16bit SIGNED INT	1
07	발전 V-W 전압 [V]	16bit SIGNED INT	1
08	발전 W-U 전압 [V]	16bit SIGNED INT	1
09	발전 U-N 전압 [V]	16bit SIGNED INT	1
10	발전 V-N 전압 [V]	16bit SIGNED INT	1
11	발전 W-N 전압 [V]	16bit SIGNED INT	1
12	발전 U 전류 [A]	16bit SIGNED INT	1
13	발전 V 전류 [A]	16bit SIGNED INT	1
14	발전 W 전류 [A]	16bit SIGNED INT	1
15	지락 전류 [A]	16bit SIGNED INT	1
16	-	-	-
17	-	-	-
18	-	-	-

ADDRESS	DATA	TYPE	SCALE
19	주파수 [Hz]	16bit SIGNED INT	/10
20	유효전력 [kW]	16bit SIGNED INT	1
21	피상전력 [kVA]	16bit SIGNED INT	1

22	무효전력 [kvar]	16bit SIGNED INT	1
23	역율 [P.F]	16bit SIGNED INT	/100
24	소방부하 유효전력 [kW]	16bit SIGNED INT	1
25	일반부하 유효전력 [kW]	16bit SIGNED INT	1
26	전체부하 유효전력 [kW]	16bit SIGNED INT	1
27	-	-	-
28	-	-	-
29	-	-	-
30	-	-	-
31	-	-	-
32	적산전력량계 [kWh] 상위	16bit SIGNED INT	주1)
33	적산전력량계 [kWh] 하위	16bit SIGNED INT	주1)
34	무효전력량계 [kvarh] 상위	16bit SIGNED INT	주2)
35	무효전력량계 [kvarh] 상위	16bit SIGNED INT	주2)
36	LED 점등 상태	16bit UNSIGNED INT	주3)
37	-	-	-
38	고장 상태	16bit UNSIGNED INT	주3)
39	상세 고장 항목1	16bit UNSIGNED INT	주3)
40	상세 고장 항목2	16bit UNSIGNED INT	주3)
41	상세 고장 항목3	16bit UNSIGNED INT	주3)

주1) 적산전력량계 : {(적산전력량계 [kWh] 상위 X 65536) + (적산전력량계 [kWh] 하위)} / 100

주2) 무효전력량계 : {(무효전력량계 [kvarh] 상위 X 65536) + (무효전력량계 [kvarh] 하위)} / 100

주3) BIT FIELD

BIT	36	38	39	40	41
0	고장	-	과전압(정한시)	-	-
1	차단기 투입	경고	저전압	-	-
2	차단기 차단	차단	과전류(순시)	-	-
3	운전 중	-	과전류(정한시)	-	-
4	소방운전	-	과전류(반한시)	-	-
5	-	-	지락과전류(접점)	-	-
6	-	-	지락과전류(순시)	-	-
7	-	-	지락과전류(정한시)	-	-
8	BLOCK 모드	-	지락과전류(반한시)	-	-
9	수동운전	-	비상정지	-	-
10	자동운전	-	차단기 오작동	-	-
11	한전상태	-	발전기 고장	-	-
12	-	-	내부통신 고장	-	-
13	-	-	확장모듈통신 고장	-	-
14	-	-	과전 <mark>압(순시)</mark>	-	-
15	-	-	과전압(반한시)	-	-

11.2. 마스터 Control (05h)

ADDRESS	DATA	VALUE
0001	_	
0002	-	0x1100

0003	고장 해제
0005	운전모드 변경
0006	블록모드
0007	수동운전 모드
0008	자동운전 모드
0009	차단기 투입
0010	차단기 차단

11.3. 슬레이브 Request (04h)

ADDRESS	DATA	TYPE	SCALE
129	1번 슬레이브 유효전력 [kW]	16bit UNSIGNED INT	1
131	1번 슬레이브 발전 L-L 전압 평균 [V]	16bit UNSIGNED INT	1
133	1번 슬레이브 발전 전류 평균 [A]	16bit UNSIGNED INT	1
135	1번 슬레이브 고장상태	16bit UNSIGNED INT	주4)
137	1번 슬레이브 LED 점등 상태	16bit UNSIGNED INT	주4)
139	2번 슬레이브 유효전력 [kW]	16bit UNSIGNED INT	1
141	2번 슬레이브 발전 L-L 전압 평균 [V]	16bit UNSIGNED INT	1
143	2번 슬레이브 발전 전류 평균 [A]	16bit UNSIGNED INT	1
145	2번 슬레이브 고장상태	16bit UNSIGNED INT	주4)
147	2번 슬레이브 LED 점등 상태	16bit UNSIGNED INT	주4)
149	3번 슬레이브 유효전력 [kW]	16bit UNSIGNED INT	1
151	3번 슬레이브 발전 L-L 전압 평균 [V]	16bit UNSIGNED INT	1
153	3번 슬레이브 발전 전류 평균 [A]	16bit UNSIGNED INT	1
155	3번 슬레이브 고장상태	16bit UNSIGNED INT	주4)
157	3번 슬레이브 LED 점등 상태	16bit UNSIGNED INT	주4)
159	4번 슬레이브 유효전력 [kW]	16bit UNSIGNED INT	1
161	4번 슬레이브 발전 L-L 전압 평균 [V]	16bit UNSIGNED INT	1
163	4번 슬레이브 발전 전류 평균 [A]	16bit UNSIGNED INT	1
165	4번 슬레이브 고장상태	16bit UNSIGNED INT	주4)
167	4번 슬레이브 LED 점등 상태	16bit UNSIGNED INT	주4)
169	5번 슬레이브 유효전력 [kW]	16bit UNSIGNED INT	1
171	5번 슬레이브 발전 L-L 전압 평균 [V]	16bit UNSIGNED INT	1
173	5번 슬레이브 발전 전류 평균 [A]	16bit UNSIGNED INT	1
175	5번 슬레이브 고장상태	16bit UNSIGNED INT	주4)
177	5번 슬레이브 LED 점등 상태	16bit UNSIGNED INT	주4)
179	6번 슬레이브 유효전력 [kW]	16bit UNSIGNED INT	1
181	6번 슬레이브 발전 L-L 전압 평균 [V]	16bit UNSIGNED INT	1
183	6번 슬레이브 발전 전류 평균 [A]	16bit UNSIGNED INT	1
185	6번 슬레이브 고장상태	16bit UNSIGNED INT	주4)
187	6번 슬레이브 LED 점등 상태	16bit UNSIGNED INT	주4)

ADDRESS	DATA	TYPE	SCALE
189	7번 슬레이브 유효전력 [kW]	16bit UNSIGNED INT	1
191	7번 슬레이브 발전 L-L 전압 평균 [V]	16bit UNSIGNED INT	1
193	7번 슬레이브 발전 전류 평균 [A]	16bit UNSIGNED INT	1

195	7번 슬레이브 고장상태	16bit UNSIGNED INT	주4)
197	7번 슬레이브 LED 점등 상태	16bit UNSIGNED INT	주4)
199	8번 슬레이브 유효전력 [kW]	16bit UNSIGNED INT	1
201	8번 슬레이브 발전 L-L 전압 평균 [V]	16bit UNSIGNED INT	1
203	8번 슬이브 발전 전류 평균 [A]	16bit UNSIGNED INT	1
205	8번 슬레이브 고장상태	16bit UNSIGNED INT	주4)
207	8번 슬레이브 LED 점등 상태	16bit UNSIGNED INT	주4)

주4) BIT FIELD

BIT	슬레이브 LED 점등 상태	슬레이브 고장상태	
0	고장	과전압(정한시)	
1	차단기 투입	저전압	
2	차단기 차단	과전류(순시)	
3	운전중	과전류(정한시)	
4	소방운전	과전류(반한시)	
5	-	지락과전류(접점)	
6	-	지락과전류(순시)	
7	-	지락과전류(정한시)	
8	BLOCK 모드	지락과전류(반한시)	
9	수동운전	비상정지	
10	자동운전	차단기 오작동	
11	한전상태	발전기 고장	
12	_	내부통신 고장	
13	-	확장모듈통신 고장	
14	-	과전압(반한시)	
15	-	과전압(순시)	

11.4. 통신 예시

- Request(04h) : 02국번의 01번지부터 10개를 요청할 경우

요청		응답	
DATA(h)	내용	DATA(h)	내용
02	설정된 국번	02	설정된 국번
04	Command code	04	Command code
00	시작주소 hi	14	데이터 Byte 갯수
00	시작주소 Low -1	00	01번지 데이터 hi
00	데이터 요청갯수 hi	00	01번지 데이터 low
0A	데이터 요청갯수 low	-	나머지 데이터 전송
XX	CPC	XX	CPC
XX	CRC	XX	CRC

12. 반한시 특성 곡선

- 적용범위 : 과전압, 과전류, 지락과전류 반한시
- X축 : 입력값/설정값
- Y축:동작시간(초)
- 레버 설정값 : 0.05~1.00
- 동작 공식

동작시간(t) =
$$\frac{0.14}{(입력값/설정값)^{0.02}-1} imes 레버값$$

ICD (주)아이씨디