NeoGCP FD PLUS+

사용설명서

Rev. E

- 본 메뉴얼은 NeoGCP FD PLUS+ Ver. 2.04 이상의 버전에 맞게 적용된 메뉴얼입니다.

- 이전 버전의 메뉴얼은 당사에 문의 바랍니다.

펌웨어 버전	적용 메뉴얼 버전	변경사항
1.37	Rev. C	- 발전차단기 연동 사용설정 추가
2.01	Rev. D	- 과전압, 과전류, 지락과전류 보호동작 기능 변경 - 과전압 순시 추가
2.04	Rev. E	- 모델명 PLUS 추가(V2.04)

NeoGCP FD PLUS+

차 례

1. NeoGCP FD PLUS+의 소개	5
1.1. NeoGCP FD PLUS+란?	5
1.2. 제품 특징	5
1.3. 제품 이미지	5
1.4. 제품 사양	5
2. 버튼 사용방법 및 LED 점등 상태	6
2.1. 버튼 사용방법	6
2.2. LED 점등 상태	6
3. LCD 표시 상태	7
3.1. 시작 화면	7
3.2. 메인 화면	7
3.3. 고장 화면	7
3.4. 메뉴 선택 화면	8
3.5. 메뉴 설정 화면	8
4. 전선 사양 및 컷팅 사이즈	9
4.1. 전선 사양	9
4.2. 컷팅 사이즈	9
5. 입력 및 출력단자	10
5.1. [1]번, [2]번 Vdc ±	10
5.2. [6]번 ~ [9]번 GEN PT U, V, W, N	11
5.3. [12]번~[14]번 RS485 ±	11
5.4. [15]번 ~ [24]번 접점입력(D/I)	11
5.5. [25]번 ~ [40]번 릴레이 출력(D/O)	11
5.6. [47]번, [48]번 GEN ZCT K, L	12
5.7. [49]번 ~ [52]번 GEN CT U, V, W, N	12
6. 동작 순서	13
6.1. 순서	13
- 3 -	Rev. D

	6.2. 블록 [BLOCK]	.13
	6.3. 수동 [MANUAL]	.13
	6.4. 자동 [AUTO]	.14
7. ¤	베뉴 설정	15
	7.1. 발전기 세트 설정	.15
	7.2. 제어 시퀀스 설정	.15
	7.3. 접점입력(D/I) 설정	.16
	7.4. 릴레이출력(D/O) 설정	.19
	7.5. 보호동작 설정	.22
	7.6. 직렬 통신 설정	.23
	7.7. 센싱 게인 설정	.23
	7.8. 보호동작 테스트	.23
	7.9. 고장이력 확인	.24
	7.10. 컨트롤러 점검	.24
8	고장 항목	24
9. [통신 프로토콜 - MODBUS	25
	9.1. Modbus Protocol	.25
	9.2. Request (04h)	.25
	9.3. Control (05h)	.26
	9.4. 통신 예시	.26
10.	통신 프로토콜 - GIMAC-II Plus	27
	10.1. Request (04H)	.27
	10.2. Control (05H)	.28
11.	반한시 특성 곡선	29

1. NeoGCP FD PLUS+의 소개

- 1.1. NeoGCP FD PLUS+란?
 - Neo Generator Control Panel for Feeder Panel Digital Controller는 마이크로 프로세서를 이용한 디지털 제어방식의 소방전원 보존형 발전기를 위한 피더 컨트롤러 입니다.
- 1.2. 제품 특징
 - 192 × 64 그래픽 LCD를 사용한 한글 디스플레이로 피더 컨트롤러의 설정을 쉽고 간편하게 할 수 있습니다.
 - OVR, UVR, OCR, OCGR 기능이 내장되어 있습니다.
 - 1% 오차범위의 빠르고 정확한 전압, 전류 계측이 가능합니다.
 - [블록], [수동], [자동] 운전이 가능하며, 보호동작이 미사용, 경고, 차단의 3단계로 보호됩니다.
 - 최대 10개의 고장이력 및 최대 150개의 제어이력 데이터 열람이 가능합니다.
 - RS485 통신포트가 내장되어 있으며, Modbus Protocol 04h, 05h를 지원합니다.
 - 디지털입력 10개, 디지털출력 8개의 자유로운 설정이 가능합니다.
- 1.3. 제품 이미지

- 제품의 이미지는 아래와 같습니다.

〈NeoGCP FD PLUS+ 전면 이미지 〉

〈NeoGCP FD PLUS+ 후면 이미지〉

- 1.4. 제품 사양
 - 제품의 사양은 아래와 같습니다.

외형크기 (mm)	240(L)×178(W)×53.5(H)	운전가능 온도	−20 ~ 70 °C
중량	약 862 g	CT 입력범위	0 ~ 5 [A]
컨트롤러 전원	8 ~ 32 Vdc	발전전원	Max AC 550 [Vrms]
최대소모 전력	4.8 W	발전상태 감지	접점 or 전압

2. 버튼 사용방법 및 LED 점등 상태

2.1. 버튼 사용방법

- 전면의 버튼으로 각종 운전정보의 조정 및 설정을 변경할 수 있습니다.

구분	내용	비고
방향버튼	화면전환 및 메뉴에서 설정 값 변경 시 사용합니다. 고장내역 표시 화면에서 항목 전환 시 사용합니다.	
MODE	블록], [수동], [자동] 상태로 변경할 때 사용합니다.	
MENU	메인 화면에서 메뉴 선택 화면으로 전환할 때 사용합니다.	
ENTER	메뉴 선택 화면에서 메뉴를 선택할 때 사용합니다. 메뉴 설정 화면에서 주요 정보를 입력할 때 사용합니다.	
ESC	메뉴 선택 화면에서 메인 화면으로 전환 시 사용합니다. 메뉴 설정 화면에서 설정 값 변경 중 취소 시에 사용합니다. 고장 확인 화면에서 고장을 해제하지 않고 메인 화면으로 전환할 때 사용합니다.	
LAMP TEST	메인 화면의 LED를 점검할 때 사용합니다.	
ALARM	고장 발생 시 고장 확인 화면으로 이동할 때 사용합니다. 다수의 고장 발생 시 고장의 내용을 순차적으로 확인할 때 사용합니다.	
RESET	고장 발생 시 고장을 해제할 때 사용합니다. 고장 확인 화면에서 고장을 해제할 때 사용합니다.	
CLOSE	수동 운전 중 차단기를 투입할 때 사용합니다.	
OPEN	수동 운전 중 차단기를 차단할 때 사용합니다.	

2.2. LED 점등 상태

- LED는 각종 운전 상태와 고장상황 및 차단기의 투입, 차단 여부에 대한 상태를 표시합니다.

항목	색상	내용
BLOCK	황색	[블록] 상태에서 점등
MANUAL	황색	[수동] 상태에서 점등
AUTO	황색	[자동] 상태에서 점등
GRID	적색	상용전원 상태 표시, [UVR 접점] 상태에 따라서 점등, 소등
ALARM	적색	고장 상황 발생 시 점등, 고장 상황 해제 시 소등
CLOSE	적색	[차단기 투입] 상태에서 점등, [차단기 차단] 상태에서 소등
OPEN	녹색	[차단기 차단] 상태에서 점등, [차단기 투입] 상태에서 소등
GEN START	황색	발전기의 운전상태 표시, [발전기 운전중접점] 상태에 따라서 점등, 소등

3. LCD 표시 상태

3.1. 시작 화면

- 전원이 켜지게 되면 시작 화면이 나타나며, 제품 번호, 프로그램 버전이 표시됩니다.

〈시작 화면〉

3.2. 메인 화면

- 시작 화면에서 프로그램의 부팅이 완료되면 메인 화면으로 화면이 전환됩니다.

- 메인 화면에서는 발전기 및 부하의 주요 정보들이 표시됩니다.

- 메인 화면은 총 4줄로 표시되며 각 줄의 표시내용은 아래와 같습니다.

순서	표시내용
1줄	운전 상태, 준비 상태, 차단기 투입/차단 타이머
2줄	유효전력 [kW], 발전 선간 전압 [V], 발전 전류 [A], 역률
3줄	[▲], [▼] 버튼으로 표시내용 변경 가능 - 피상전력 [kVA], 무효전력 [kvar] - 발전 선간전압 [V], 발전 상전압 [V], 발전 주파수 [Hz], 발전 전류 [A], 지락전류 [A] - 적산 전력량 [kWh], 무효 전력량 [kvarh], 현재 날짜, 시간
4줄	접점입력(D/I) 01~10, 릴레이출력(D/O) 1~8

〈 메인 화면 〉

3.3. 고장 화면

3.3.1. 고장 확인

- 고장 상황이 발생하게 되면 자동으로 고장 화면으로 전환됩니다.

〈고장 화면〉

- [고장 내용] 우측의 숫자는 발생한 고장의 개수를 나타내며, 다수의 고장이 발생한 경우

[ALARM] 버튼을 누르면 발생한 고장의 내용을 순차적으로 확인할 수 있습니다.

3.3.2. 고장 해제

- 고장 상황이 해결되었을 경우 [RESET] 버튼을 누르면 발생한 고장의 내용이 해제됩니다.

- 고장 상황을 해결하지 않고 [ALARM] 버튼을 누르면 메인 화면으로 전환됩니다.

3.4. 메뉴 선택 화면

- 메인 화면에서 [MENU] 버튼을 누르면, 메뉴 선택 화면으로 전환이 됩니다.
- 메뉴 선택 화면에서 [▲], [▼] 버튼을 사용하여 원하는 항목을 선택 후 [ENTER] 버튼을 누르면 해당 항목으로 이동 후 메뉴 설정 화면으로 이동합니다.

- 3.5. 메뉴 설정 화면
 - 메뉴 설정 화면의 밑줄에는 현재 메뉴 설정 화면에서 설정 가능한 메뉴의 영어 약자가 표시되며,

현재 선택한 메뉴의 영어 약자에 느낌표가 표시됩니다.

- 메뉴 설정화면에서 [◀], [▶] 버튼을 사용하여 원하는 항목을 선택 후 [ENTER] 버튼을 누른 후

[▲], [▼] 버튼을 사용하여 발전기의 주요 정보들을 수정할 수 있습니다.

4. 전선 사양 및 컷팅 사이즈

4.1. 전선 사양

- NeoGCP FD PLUS+의 모든 입출력은 플러거블 (pluggable) 터미널 블록을 통해 이루어집니다.

〈 플러거블 터미널 블록 〉

- 결선 사양은 아래와 같습니다.

전선 굵기	0.34 ~ 2.5 mm ²
단선 (AWG)	12 ~ 24
연선 (AWG)	12 ~ 24
스크류 크기	M3
핀 터미널 길이	6 ~ 7 mm

4.2. 컷팅 사이즈

5. 입력 및 출력단자

No.	항목	설명	No.	항목	설명
1	VDC+	컨트롤러 전원 입력	56	GEN CT U+	
2	VDC-	8~32 [Vdc]	55	GEN CT U-	
3	MAIN R		54	GEN CT V+	피더 차단기 전류 입력 (CT 2차)
4	MAIN S	사용하지 않음	53	GEN CT V-	0.01~10 [A], Max 10 [A], Peak 1 [s]
5	MAIN T		52	GEN CT W+	
6	GEN PT U		51	GEN CT W-	
7	GEN PT V	피더 차단기 전압 입력	50	GEN ZCT K	피더차단기지락전류 입력(CT 2차)
8	GEN PT W	Max AC 550 [V]	49	GEN ZCT L	0.01~10 [A], Max 10 [A], Peak 1 [s]
9	GEN PT N		48	SENSOR 1	
10	MPU+	사요하지 아우	47	SENSOR 2	
11	MPU-		46	SENSOR 3	
12	RS485+	RS485 토시 인려	45	SENSOR 4	사용하지 않음
13	RS485-		44	SENSOR 5	
14	RS485END	RS485-와연결시종단저항120[Ω]	43	SENSOR	
15	DI 1			COM-	
16	DI 2		42	CAN CH	사용하지 않음
1	DI 3		41	CAN CL	
18	DI 4		40	RFLAY 1	
19	DI 5	Digital Input 저저 인령 (\/dc-)	39		
20	DI 6		38	RELAY 2	
21	DI 7		37		
22	DI 8		36	RELAY 3	
23	DI 9		35		
24	DI 10		34	RELAY 4	
			33		RELAY Output 접점 출력
			32	RELAY 5	Max 250 [Vac], 24 [Vdc], 5 [A]
			31		
			29	RELAY 6	
			28 27	RELAY 7	
			26 25	RELAY 8	

5.1. [1]번, [2]번 Vdc ±

- [1]번, [2]번 단자를 통하여 8~32 [Vdc]의 전원을 공급합니다.
- 전원이 공급될 때 공급전원의 임피던스에 따른 돌입전류가 발생할 가능성이 있습니다.
- 돌입전류에 의한 제품손상을 방지하기 위하여, 퓨즈나 차단기 같은 과전류 보호 장치를 전원선에
 직렬로 설치하시기를 권장합니다.

5.2. [6] 번 ~ [9] 번 GEN PT U, V, W, N

- [6]번~ [9]번 단자를 통해 Max AC 550 [Vrms]의 피더 차단기 전압을 감지합니다.

- 피더 차단기 전압이 AC 550 [Vrms]를 초과한다면 PT(변압기: Potential Transformer)를 사용해야 하며

PT 2차 전압이 AC 550 [Vrms]를 초과해서는 안됩니다.

영향을 받는 메뉴	설정값	내용
[피더반 환경설정] → [정격전압]	110 ~ 6600	PT 1차 전압 입력
[피더반 환경설정] → [PT 비율]	1 ~ 99.99	사용자가 사용하는 PT 비율

5.3. [12] 번~ [14] 번 RS485 ±

- [12]번, [13]번 단자를 통해 RS485 ± 입력을 감지합니다.

- [13]번, [14]번 단자를 연결시키면 종단 저항 120 [Ω] 이 연결됩니다.

5.4. [15] 번 ~ [24] 번 접점입력(D/I)

- [15] ~ [24] 번 단자를 통해 사용자가 설정한 D/I Vdc 가 입력되면, 〈디지털 입력 배선 모식도〉와 같이 해당 접점의 신호가 송출됩니다.
- D/I의 자세한 사항은 [7.3 접점입력(D/I) 설정]을 참고하시기 바랍니다.

5.5. [25] 번 ~ [40] 번 릴레이 출력(D/O)

- [25]번~ [40]번 단자를 통해 사용자가 설정한 출력신호가 송출됩니다.
- REALY 1 ~ REALY 8의 접점 용량은 250 [Vac], 24 [Vdc], MAX 5 [A] 입니다.

- 외부 RELAY 사용 시 접점용량을 고려하신 후 RELAY를 사용하시기 바랍니다.

- D/O의 자세한 사항은 [7.4 릴레이출력(D/O) 설정]을 참고하시기 바랍니다.

5.6. [47] 번, [48] 번 GEN ZCT K, L

- [47] 번, [48] 번 단자를 통해 피더 차단기 지락전류를 감지합니다.

- 계측 가능한 최소전류는 0.01 [Arms]이며, 최대전류는 10 [Arms], 피크타임은 1 [s]입니다.

- 사용하시는 ZCT (영상 변류기 : Zero Current Transformer)에 맞추어 설정을 변경해야 합니다.

메뉴 설정 위치	설정값	내용
[피더반 환경설정] → [지락 CT 비율]	사용자 설정	피더 차단기 지락전류 감지

5.7. [49]번~ [52]번GENCTU, V, W, N

- [49] ~ [52] 번 단자를 통해 피더 차단기 전류를 감지합니다.

- 계측 가능한 최소전류는 0.01 [Arms]이며, 최대전류는 10 [Arms], 피크타임은 1 [s]입니다.

- 사용하시는 CT (변류기 : Current Transformer)에 맞추어 설정을 변경해야 합니다.

메뉴 설정 위치	설정값	사용하는 단자
[피더반 환경설정]→[CT 비율]	사용자 설정	피더 차단기 전류 감지

6. 동작 순서

- 6.1. 순서
 - [운전] 상태가 되기 위한 입력은 아래와 같습니다.
 - [발전기 상태입력 설정]이 [전압]으로 설정되었을 경우, 발전전압에 따라 [운전] 상태로 전환됩니다.
 - [발전기 상태입력 설정]이 [접점]으로 설정되었을 경우 [①+②+③] 접점 입력에 따라 [운전] 상태로 전환됩니다.
 - [발전기 상태입력 설정]이 [접점+전압]으로 설정되었을 경우 [접점]을 우선으로 동작합니다.

번호	구분	내용	메뉴설정 위치
1	[UVR 접점]	발전기 기동준비 상태 감지	
2	[발전기 운전중 접점]	발전기 운전 상태 감지	[접점 입력(D/I) 설정] → [접점 설정]
3	[차단기 보조접점]	피더 차단기 상태 감지	

① [UVR 접점]으로 발전기의 준비 상태를 감지합니다.

- [UVR 접점]이 차단될 경우, 설정된 지연시간 후 피더 차단기가 차단됩니다.

② [발전기 운전중 접점]으로 발전기의 운전 상태를 감지합니다.

- [발전기 운전중 접점]이 차단될 경우, 즉시 피더 차단기가 차단됩니다.

③ [차단기 보조접점]으로 피더 차단기의 상태를 감지합니다.

〈 결선도 예시 〉

6.2. 블록 [BLOCK]

- [블록] 상태에서는 피더 차단기의 제어가 되지 않고 메뉴설정만 가능합니다.

6.3. 수동 [MANUAL]

- [CLOSE], [OPEN] 버튼은 [발전차단기 보조접점], [UVR 접점] 또는 [피더반 제어 접점]의 입력여부와 상관없이 동작합니다.

	순서	내용	비고
--	----	----	----

1	운전방법 선택	[MODE] 버튼으로 [MANUAL] 선택		[MANUAL] LED 점등
	745471	MCCB	수동투입 / [OPEN] 버튼으로 차단	[차단기 보조접점 체크]
2	지신기 투입/차단	ACB	[CLOSE] 버튼으로 투입 / [OPEN] 버튼으로 차단	사용 시 LED 점등
		미사용	동작안함	동작안함

6.4. 자동 [AUTO]

- [발전기 상태입력 설정]이 [전압]으로 설정되었을 경우, 발전전압에 따라 [운전] 상태로 전환됩니다.
- [발전기 상태입력 설정]이 [접점]으로 설정되었을 경우 [UVR 접점], [발전기 운전중 접점] 이 입력되어야만 피더 차단기가 투입됩니다.

	순서	내용	비고
1	운전방법 선택	[MODE] 버튼으로 [AUTO] 선택	[AUTO] LED 점등
2-	발전기 운전 상태 체크	[UVR 접점] 입력	[GRID] LED 점등
3	발전 차단기 상태 체크	[발전기 운전중 접점] 입력	[GEN START] LED 점등
4	피더 차단기 투입	[차단기 투입 지연시간] 후 차단기 투입	[CLOSE] LED 점등
5	피더 카다기 카다	[차단기 차단 지연시간] 후 차단기 차단	[UVR 접점] 차단 시
5	끠너 자단기 자단	즉시 차단기 차단	[발전기 운전중 접점] 차단 시

7. 메뉴 설정

- 7.1. 발전기 세트 설정
 - 피더 차단기의 기본적인 정보들을 설정할 수 있습니다.
 - 정지상태에서 설정 가능합니다. (일부항목 제외)

항목		설명	설정
정격 주파수	F	발전 정격 주파수 입력	40 ~ 60 [Hz]
정격 전압	V	발전 정격 전압 입력	110 ~ 6600 [V]
정격 전류	I	발전 정격 전류 입력	5 ~ 9999 [A]
지락 전류	GRI	발전 지락 전류 입력	5 ~ 9999 [A]
PT 비율	PT	PT 비 입력	1.00 ~ 99.99
CT 비율	СТ	CT 비 입력	5/1 ~ 9999/5
지락 CT 비율	ZCT	ZCT 비 입력	5/1 ~ 9999/5
차단기 종류	TYPE	차단기 타입 설정	MCCB / ACB
차단기 보조접점 체크	AUX	차단기 보조접점 사용설정	사용 / 미사용
발전차단기 연동(수동시)	MAIN	피더 차단기 투입가능여부 설정	사용 / 미사용
버튼음 설정	BEEP	버튼음 사용 설정	사용 / 미사용
경고음 출력시간	HORN	경고음 출력 시간 설정	0 ~ 600 [s]
백라이트 유지시간	LIGHT	백라이트 유지시간 설정	0 ~ 600 [s]
날짜 설정	DATE	날짜 설정	
시간 설정	TIME	시간 설정	00:00 ~ 23:59
시간 보정	CLOCK	시간 보정 설정	-31 ~ +31

7.2. 제어 시퀀스 설정

- 피더 차단기 제어 방법을 설정할 수 있습니다.

항목		설명	설정
ACB 투입 지연시간	CLOSE	[자동] 상태피더차단기 투입 지연시간	0 ~ 60 [초]
ACB 차단 지연시간	OPEN	[자동] 상태피더차단기차단 지연시간	0 ~ 60 [초]
발전기상태 입력 방법	MODE	[운전] 상태 전환 방법 설정	[접점+전압] [접점] [전압]
피더 투입 전압	CLOSE	[운전] 상태 투입 전압	50 ~ 100 [%]
피더 차단 전압	OPEN	[운전] 상태 해제 전압	50 ~ 100 [%]

7.3. 접점입력(D/I) 설정

- NeoGCP FD PLUS+ 제어에 필요한 디지털 입력접점(D/I)을 설정할 수 있습니다.

구분	D/l 목록 (SET)	설명	종류 (TYPE)	지연시간 (DELAY)	고장등급 (ALARM)	메시지 (TXET)
	고장접점	사용자 고장접점				
	고장접점 (운전중)	사용자 고장접점(운전중)			[[]]1[8]	수정가능
고장	고장접점 (정지중)	사용자 고장접점(정지중)			[비사용]	
접점	비상정지 스위치	비상정지			[카다]	
	지락과전류 접점	지락과전류			[시간]	
	발전기 고장 접점	발전기 고장 접점				
	차단기 보조접점	피더차단기 상태 파악	[N/O]	0~25		
	발전기 운전중 접점	발전기 운전 상태 파악		[코]		
	UVR 접점	발전기 기동여부 파악		[22]		그저
사디비	블록모드 접점	[BLOCK] 상태 입력 접점				<u></u> що
장대 접점	수동모드 접점	[MANUAL] 상태입력접점				
	자동모드 접점	[AUTO] 상태 입력 접점				
	차단기 투입 접점	차단기 투입 접점				
	차단기 차단 접점	차단기 차단 접점				
	고장해제 접점	고장해제 접점				

7.3.1. 고장접점

- 사용자의 고장접점으로 사용합니다.

- 접점 입력 시 설정된 지연시간 후 고장등급에 따라 피더 차단기의 운전상태가 전환됩니다.

- 경고 메세지를 수정할 수 있습니다.

- 설정: 타입(N/O, N/C), 지연시간(0.0 ~ 25.0 [초]), 고장등급(미사용, 차단, 경고), 메시지(TEXT)

7.3.2. 고장접점(운전중)

- [발전기 운전중 접점] 이 입력된 상태에서 [고장접점(운전중)] 접점이 입력되면
 설정된 지연시간 후 고장등급에 따라 피더 차단기의 운전상태가 전환됩니다.
- 고장 메세지를 수정할 수 있습니다.
- 설정: 타입(N/O, N/C), 지연시간(0.0~25.0 [초]), 고장등급(미사용, 차단, 경고), 메시지(TEXT)

7.3.3. 고장접점(정지중)

- [발전기 운전중 접점] 이 차단된 상태에서 [고장접점(정지중)] 접점이 입력되면, 설정된 지연시간 후 고장등급에 따라 피더 차단기의 운전상태가 전환됩니다.
- 고장 메세지를 수정할 수 있습니다.
- 설정: 타입(N/O, N/C), 지연시간(0.0~25.0 [초]), 고장등급(미사용, 차단, 경고), 메시지(TEXT)

7.3.4. 비상정지 스위치

- 비상정지 스위치 접점으로 사용합니다.
- 접점 입력 시 피더 차단기가 즉시 차단됩니다.
- 설정 : 타입(N/O, N/C), 지연시간(0.0 ~ 25.0 [초]), 고장등급(미사용, 차단, 경고)
- 7.3.5. 지락과전류 접점
 - 지락과전류 계전기의 접점으로 사용합니다.
 - 접점 입력 시 설정된 지연시간 후 고장등급에 따라 피더 차단기의 운전상태가 전환됩니다.

- 설정 : 타입(N/O, N/C), 지연시간(0.0 ~ 25.0 [초]), 고장등급(미사용, 차단, 경고)

7.3.6. 발전기 고장 접점

- 발전기 고장 접점으로 사용합니다.
- 접점 입력 시 설정된 지연시간 후 고장등급에 따라 피더 차단기의 운전상태가 전환됩니다.
- 설정 : 타입(N/O, N/C), 지연시간(0.0 ~ 25.0 [초]), 고장등급(미사용, 차단, 경고)

7.3.7. 차단기 보조접점

- 피더 차단기 보조접점으로 사용합니다.
- [CLOSE], [OPNE] LED 점등 및 피더 차단기의 고장상태 확인에 사용됩니다.
- 설정 : 타입(N/O, N/C)

7.3.8. 발전기 운전중 접점

- 발전기 운전상태 접점으로 사용합니다.
- 설정 : 타입(N/O, N/C)

7.3.9. UVR 접점

- 발전기 기동상태 접점으로 사용합니다.
- 설정 : 타입(N/O, N/C)

7.3.10. 블록모드 접점

- [블록] 상태 입력 접점으로 사용합니다.

- 설정 : 타입(N/O, N/C)

- 7.3.11. 수동모드 접점
 - [수동] 상태 입력 접점으로 사용합니다.
 - 설정 : 타입(N/O, N/C)
- 7.3.12. 자동모드 접점
 - [자동] 상태 입력 접점으로 사용합니다.
 - 설정 : 타입(N/O, N/C)
- 7.3.13. 차단기 투입 접점
 - 피더 차단기 투입 접점으로 사용합니다.
 - 접점 입력 시 [신호-차단기 투입] 접점이 출력될 수 있는 조건일 때 접점이 출력됩니다.
 - 설정 : 타입(N/O, N/C)
- 7.3.14. 차단기 차단 접점
 - 피더 차단기 차단 접점으로 사용합니다.
 - 접점 입력 시 차단기가 차단 됩니다.
 - 설정 : 타입(N/O, N/C)
- 7.3.15. 고장 해제 접점
 - 고장 해제 접점으로 사용합니다.
 - 고장상황 발생 후 해제되었을 경우, 접점 입력 시 고장상황이 초기화됩니다.
 - 고장상황 발생 후 해제되지 않았을 경우, 접점 입력 시 부저만 초기화됩니다.

- 설정 : 타입(N/O, N/C)

7.4. 릴레이출력(D/O) 설정

- 디지털 출력접점(D/O)을 설정할 수 있습니다.

구분	D/O 목록	내용
	신호-차단기 투입	차단기 투입 출력
시중 초려	신호-차단기 차단	차단기 차단 출력
신오 물릭	신호-알람 부저	알람시 부저출력
	신호-알람 해제	알람 해제 시 출력
	상태-한전	상용전원 상태 출력
	상태-정전	발전전원 상태 출력
	상태-운전중	발전기 [운전] 상태 출력
	상태-블록모드	[블록] 상태 출력
상태 출력	상태-자동운전모드	[자동] 상태 출력
	상태-수 동 운전모드	[수동] 상태 출력
	상태-모든고장	모든 고장상황 발생 시 출력
	상태-경고장	고장등급 경고 발생 시 출력
	상태-차단고장	고장등급 차단 발생 시 출력
	고장-과전압	과전압 고장 발생 시 출력
	고장-저전압	저전압 고장 발생 시 출력
고장 출력	고장-과전류	과전류
	고장-지락과전류	지락과전류
	고장-고장접점1~10	사용자 고장접점

7.4.1. 신호-차단기 투입

- 피더 차단기 투입 출력 접점으로 사용합니다.

출력 조건	설정
[운전] 상태일 것	사용자 설정
차단고장 없을 것	사용자 설정
차단기 종류 ACB일 것	출력 사용시 사용자 설정

- [자동] 상태에서 [차단기 종류]가 ACB일 경우, [차단기 투입 지연시간] 후 접점이 출력됩니다.

- [수동] 상태에서 [운전] 상태와 상관없이 [차단기 종류]가 ACB일 경우, [CLOSE] 버튼으로 접점을 출력할

수 있습니다.

영향을 받는 메뉴	내용
[피더반 환경 설정] → [차단기 설정] → [미사용]	출력 안됨
[제어 시퀀스 설정] → [차단기 투입 지연시간]	자동운전에서 지연시간
[CLOSE] 버튼	수동운전에서 즉시 출력

7.4.2. 신호-차단기 차단

- 피더 차단기 차단 출력 접점으로 사용합니다.

- [자동] 상태에서 [차단기 종류]가 ACB일 경우, 피더 차단기 차단 상황이나 [UVR 접점] 차단 시

설정된 지연시간 후 접점이 출력됩니다.

- [자동] 상태에서 [차단기 종류]가 ACB일 경우, [발전기 운전중 접점] 차단 시 즉시 출력됩니다.
- [자동] 상태에서 [차단기 종류]가 MCCB일 경우, 차단 경고상황 발생 시 즉시 출력됩니다.
- [수동] 상태에서 [차단기 종류]와 상관없이, [OPEN] 버튼으로 접점을 즉시 출력할 수 있습니다.

영향을 받는 메뉴	내용
[피더반 환경 설정] → [차단기 설정] → [미사용]	출력 안됨
[제어 시퀀스 설정] → [차단기 차단 지연시간]	자 동운 전에서 지연시간
[CLOSE] 버튼	수동운전에서 즉시 출력

7.4.3. 신호-알람 부저

- 고장 상황 발생 시 알람부저 출력 접점으로 사용합니다.

- [경고음 출력시간] 동안 접점이 출력되며, 0으로 설정 시 수동으로만 알람 리셋이 가능하게 됩니다.

영향을 받는 메뉴	설정	내용
[피더반 환경 설정] → [버튼음 설정] → [경고음 출력시간]	0~600 [초]	설정시간 동안 접점 출력

7.4.4. 신호-알람 해제

- 고장해제 출력 접점으로 사용합니다.

- [고장 해제 접점]이 입력되거나, [RESET] 버튼이 작동하는 동안 출력됩니다.

7.4.5. 상태-한전

- 상용전원 상태 출력 접점으로 사용합니다.

- [UVR 접점] 차단 시 출력됩니다.

7.4.6. 상태-정전

- 발전전원 상태 출력 접점으로 사용합니다.
- [UVR 접점] 입력 시 출력됩니다.

7.4.7. 상태-운전중

- [운전] 상태 출력 접점으로 사용합니다.
- [발전차단기 보조접점] 입력 시 출력됩니다.
- 7.4.8. 상태-블록모드, 수동운전모드, 자동운전모드, 비상운전모드

- 각 운전 상태 별 출력 접점으로 사용합니다.

7.4.9. 상태-모든고장

- 고장상황 발생 시 출력 접점으로 사용합니다.
- 고장상황이 해제되었을 경우 출력이 차단됩니다.

7.4.10. 상태-경고장

- 고장등급이 경고인 상황 발생 시 출력 접점으로 사용합니다.
- 고장상황이 해제되었을 경우 출력이 차단됩니다.

7.4.11. 상태-차단고장

- 고장등급이 차단인 상황 발생 시 출력 접점으로 사용합니다.
- 고장상황이 해제되었을 경우 출력이 차단됩니다.
- 7.4.12. 고장-과전압, 저전압, 과전류, 지락과전류
 - 각 고장상황 발생 시 해당 출력 접점으로 사용합니다.
 - 고장상황이 해제되었을 경우 출력이 차단됩니다.

7.4.13. 고장접점1~10

- 사용자의 고장접점으로 사용합니다.

- 사용자의 고장고상황이 해제되었을 경우 출력이 차단됩니다.

7.5. 보호동작 설정

- 보호동작에 대한 설정을 할 수 있습니다.

· · · · · · · · · · · · · · · · · · ·		설명	설정
	정한시	과전압 레벨부터 동작	0.5 ~ 20.0 [초]
과저아	반한시	과전압 레벨부터 동작	반한시 특성곡선 참고
피한비	스지	저겨저아이 130% 브터 도자	200ms 이내
	군지	성격선합의 130% 두터 공격	(입력 전압이 클수록 시간 감소)
	정한시	과전류 레벨부터 동작	0.5 ~ 20.0 [초]
과정르	반한시	정격전류의 100% 부터 동작	반한시 특성곡선 참고
피한규	순시	정격전류의 200% 부터 동작	200ms 이내
			(입력 전류가 클수록 시간 감소)
	정한시	지락과전류 레벨부터 동작	0.5 ~ 20.0 [초]
지락과전류	반한시	지락과전류의 100% 부터 동작	반한시 특성곡선 참고
	스시	지라과저르이 200% 브러 도자	200ms 이내
	一世内	지국적인규칙 200% 구덕 중국	(입력 전류가 클수록 시간 감소)

항목		설명	설정
	SET	과전압 레벨 설정	100 ~ 150 [%]
	DELAY	과전압 정한시 지연시간 설정	0.5 ~ 20.0 [초]
과전압	LEVER	과전압 반한시 레버 설정	0.05 ~ 1.0
	CONST	과전압 순시 사용 설정	사용, 미사용
	ALARM	과전압 보호등급	미사용, 경고, 차단
	SET	저전압 레벨 설정	50 ~ 100 [%]
저전압	DELAY	저전압 지연시간 설정	0.5 ~ 20.0 [초]
	ALARM	저전압 보호등급	미사용, 경고, 차단
	SET	과전류 레벨 설정	101 ~ 200 [%]
	DELAY	과전류 지연시간 설정	0.5 ~ 20.0 [초]
과전류	LEVER	과전류 동작특성 레버 설정	0.05 ~ 1.0
	CONST	과전류 순시 사용 설정	사용, 미사용
	ALARM	과전류 보호등급	미사용, 경고, 차단
	SET	지락과전류 레벨 설정	101 ~ 200 [%]
	DELAY	지락과전류 지연시간 설정	0.5 ~ 20.0 [초]
지락과전류	LEVER	지락과전류 동작특성 레버 설정	0.05 ~ 1.0
	CONST	지락과전류 순시 사용 설정	사용, 미사용
	ALARM	지락과전류 보호등급	미사용, 경고, 차단
	SET	과주파수 레벨 설정	100 ~ 150 [%]
과주파수	DELAY	과주파수 지연시간 설정	0.5 ~ 20.0 [초]
	ALARM	과주파수 보호등급	미사용, 경고, 차단
	SET	저주파수 레벨 설정	50 ~ 100 [%]
저주파수	DELAY	저주파수 지연시간 설정	0.5 ~ 20.0 [초]
	ALARM	저주파수 보호등급	미사용, 경고, 차단

7.6. 직렬 통신 설정

- NeoGCP FD PLUS+는 두 개의 통신 포트를 가지고 있습니다.
- D-SUB 9핀은 UART 통신 포트로서 설정이 고정되어 있습니다.

항목		설명	설정
UART ID	ID	UART 포트 국번 설정	002
UART	BVIID	니ADT 피티 토시소드 서저	9600
BAUDRATE	DAOD		9000
UART PARITY	PARITY	UART 포트 패리티 설정	EVEN

- [12]번, [13]번 단자를 통한 RS485 ± 설정은 아래와 같습니다.

항목		설명	설정	
RS485 ID	ID	RS485 포트 국번 설정	0 ~ 255	
RS485	RALID	DS / 95 피터 토시소드 서저	0000 10000 20400	
BAUDRATE	BAUD	K3403 포트 중전국포 결정	9000, 19200, 38400	
RS485 PARITY	PARITY	RS485 포트 패리티 설정	NONE, EVEN, ODD	
RS485	DDOTOCOL	DC495 파리토코 성정	MODBUS, GIMAC-II	
PROTOCOL	PROTOCOL	R3403 프로도를 결경	Plus	
RS485 WORD		RS485 프로토콜이 GIMAC-II Plus인 경우		
SWAP	JWAP	WORD SWAP 사용유무	시 ਰ, 비시 ਰ	

7.7. 센싱 게인 설정

- 전압, 전류의 게인값을 조절해서 표기값을 조절할 수 있습니다.

항목		설명	설정
U-V 전압 게인	PT-UV	발전 U-V 선간전압 게인 설정	0.001 ~ 9.999
V-W 전압 게인	PT-VW	발전 V-W 선간전압 게인 설정	0.001 ~ 9.999
₩-U 전압 게인	PT-WU	발전 W-U 선간전압 게인 설정	0.001 ~ 9.999
U 전류 게인	CT-U	발전 U 전류 게인 설정	0.001 ~ 9.999
V 전류 게인	CT-V	발전 V 전류 게인 설정	0.001 ~ 9.999
W 전류 게인	CT-W	발전 W 전류 게인 설정	0.001 ~ 9.999
지락 전류 게인	CT-GR	지락전류 게인 설정	0.001 ~ 9.999

7.8. 보호동작 테스트

- 보호동작 테스트를 실행할 수 있습니다.

- 테스트의 설정은 [보호동작 설정]에서 변경할 수 있습니다.

항목	설명	설정
과전압 테스트	과전압(OVR) 테스트	
저전압 테스트	저전압(UVR) 테스트	
과전류 테스트	과전류(OCR) 테스트	[보호동작 설정]에서 변경
지락과전류 테스트	지락과전류(OCGR) 테스트	
과속도 테스트	과속도(OVER SPEED) 테스트	

7.9. 고장이력 확인

- 고장상황 발생 시 모든 운전정보들을 시간순서에 따라 최대 10개까지 확인이 가능합니다.

7.10. 컨트롤러 점검

- 제품의 정상작동 유무를 확인하기 위한 정보들을 확인할 수 있습니다.

- 제품의 펌웨어 버전 및 제품번호 확인이 가능합니다.

- 통신 RX, TX 상태 체크가 가능합니다.

- 아날로그 입력값 및 디지털 입출력값 확인이 가능합니다.

8. 고장 항목

하모		고장등급		지연시간	적용시퀀스	
07	미사용	경고	차단			
고지아	0	0	0	설정	상시	
비견법	발전전압이 괴	바전압 설정치 0	상으로 검출도	었을 때		
거지아	0	0	0	설정	운전중	
시간법	발전전압이 지	너전압 설정치 이	하로 검출되었	[을 때		
과정르	0	0	0	설정	상시	
귀간ㅠ	발전전류가고	바전류 설정치 이	상으로 검출도	었을 때		
	0	0	0	설정	상시	
지락과전류	지락전류가 설정치 이상으로 검출되었을 때					
	또는 지락과전류 접점이 입력되었을 때					
비사저지			0	즉시	상시	
-1004	비상정지로 설정된 접점이 입력되었을 때					
카다기 이자도		O		즉시	상시	
지만기포국중	차단기 보조접점이 정상적으로 입력되지 않았을 때					
바지기 그자	0	0	0	설정	상시	
2건가 포칭	발전기 고장 접점이 입력되었을 때					
접점 1~10 고장입력	0	0	0	설정	상시, 정지중, 운전중	
	고장접점이 입	」력되었을 때 ㅎ	배당 고장출력			

※ ◎ : 고정항목 ○ : 선택 가능항목

9. 통신 프로토콜 - MODBUS

9.1. Modbus Protocol

구분	설정	
프로토콜 종류	MODBUS RTU	
통신 구성	RS485 Half Duplex	
국번 설정	0 ~ 255	
Baudrate	9600, 19200, 38400 [bps]	
Parity	Even, Odd, None	
Data Bit	8 [bit]	
Stop Bit	1 [bit]	
지원 Function Code	Request(04h), Command(05h)	
지원 Exception Code	Illegal Function(01h), Illegal Address(02h), Illegal Data Value(03h)	
프레임 종료 Silent Interval	5 [ms]	

9.2. Request (04h)

ADDRESS	DATA	TYPE	SCALE
01	시리얼 번호	16bit SIGNED INT	1
02	프로그램 버전	16bit SIGNED INT	/100
03	발전 L-L 전압 평균	16bit SIGNED INT	1
04	발전 L-N 전압 평균	16bit SIGNED INT	1
05	발전 전류 평균	16bit SIGNED INT	1
06	발전 U-V 전압 [V]	16bit SIGNED INT	1
07	발전 V-W 전압 [V]	16bit SIGNED INT	1
08	발전 W-U 전압 [V]	16bit SIGNED INT	1
09	발전 U-N 전압 [V]	16bit SIGNED INT	1
10	발전 V-N 전압 [V]	16bit SIGNED INT	1
11	발전 W-N 전압 [V]	16bit SIGNED INT	1
12	발전 U 전류 [A]	16bit SIGNED INT	1
13	발전 V 전류 [A]	16bit SIGNED INT	1
14	발전 W 전류 [A]	16bit SIGNED INT	1
15	지락 전류 [A]	16bit SIGNED INT	1
19	주파수 [Hz]	16bit SIGNED INT	/10
20	유효전력 [kW]	16bit SIGNED INT	1
21	피상전력 [kVA]	16bit SIGNED INT	1
22	무효전력 [kvar]	16bit SIGNED INT	1
23	역율 [P.F]	16bit SIGNED INT	/100
32	적산전력량계 [kWh] 상위	16bit SIGNED INT	주1)
33	적산전력량계 [kWh] 하위	16bit SIGNED INT	주1)
34	무효전력량계 [kvarh] 상위	16bit SIGNED INT	주2)
35	무효전력량계 [kvarh] 상위	16bit SIGNED INT	주2)
36	LED 점등 상태	16bit UNSIGNED INT	주3)
38	고장상태	16bit UNSIGNED INT	주3)
39	상세 고장 항목1	16bit UNSIGNED INT	주3)
42	상세 고장 항목4	16bit UNSIGNED INT	주3)

주1) 적산전력량계 : {(적산전력량계 [kWh] 상위 X 65536) + (적산전력량계 [kWh] 하위)} / 100

주2) 무효전력량계: {(무효전력량계[kvarh] 상위 X 65536) + (무효전력량계[kvarh] 하위)} / 100

주3) BIT FIELD

BIT	36	38	39	40	42
0	고장	-	과전압(정한시)	-	접점1 고장입력
1	차단기 투입	경고	저전압	-	접점2 고장입력
2	차단기 차단	차단	과전류(순시)	비상정지	접점3 고장입력
3	운전 중	-	과전류(정한시)	-	접점4 고장입력
4	소방운전	-	과전류(반한시)	-	접점5 고장입력
5	-	-	지락과전류(접점)	-	접점6 고장입력
6	-	-	지락과전류(순시)	-	접점7 고장입력
7	-	-	지락과전류(정한시)	-	접점8 고장입력
8	BLOCK 모드	-	지락과전류(반한시)	-	접점9 고장입력
9	수 동운 전	-	과주파수	-	접점10 고장입력
10	자동운전	-	저주파수	-	-
11	한전상태	-	-	-	-
12	-	-	차단기 보조접점	-	-
13	-	-	발전기 고장	-	-
14	-	-	과전압(순시)	-	-
15	-	-	과전압(반한시)	-	-

9.3. Control (05h)

ADDRESS	DATA	VALUE
0001	-	
0002	-	
0003	고장해제	
0005	운전모드 변경	
0006	블록모드	0xFF00
0007	수동운전 모드	
0008	자동운전 모드	
0009	차단기 투입	
0010	차단기 차단	

9.4. 통신 예시

- Request(04h): 02국번의 01번지부터 10개를 요청할 경우

8	청	00	답
DATA(h)	내용	DATA(h)	내용
02	설정된 국번	02	설정된 국번
04	Command code	04	Command code
00	시작주소 hi	14	데이터 Byte 갯수
00	시작주소 Low -1	00	01번지 데이터 hi
00	데이터 요청갯수 hi	00	01번지 데이터 low
0A	데이터 요청갯수 low	-	나머지 데이터 전송
XX	CPC	XX	CPC
XX		XX	

10. 통신 프로토콜 - GIMAC-II Plus

10.1. Request (04H)

ADDRESS	DATA	TYPE	SCALE
30001	DI 상태	16bit unsigned int	주1)
30002	DO 상태	16bit unsigned int	주1)
30003	기기 Status	16bit unsigned int	주1)
30004	-	16bit unsigned int	
30005	발전 U 전류 [A]	32bit float	
30007	발전 V 전류 [A]	32bit float	
30009	발전 W 전류 [A]	32bit float	
30011	발전 U-N 전압 [V]	32bit float	
30013	발전 V-N 전압 [V]	32bit float	
30015	발전 W-N 전압 [V]	32bit float	
30017	발전 U-V 전압 [V]	32bit float	
30019	발전 V-W 전압 [V]	32bit float	
30021	발전 W-U 전압 [V]	32bit float	
30023	역률	32bit float	
30025	유효전력 [kW]	32bit float	
30027	무효전력 [kvar]	32bit float	
30029	피상전력 [kVA]	32bit float	
30031	주파수 [Hz]	32bit float	
30033	유효전력량 [kWh]	32bit float	
30035	무효전력량 [kvarh]	32bit float	

주1) BIT FIELD

BIT	30001	30002	30003
0	과전압 발생	발전기 운전중	-
1	저전압 발생	자동운전 모드	-
2	과전류 발생	-	-
3	지락과전류 발생	-	-
4	-	차단기 차단 출력	-
5	-	차단기 투입 출력	-
6	-	차단기 차단 입력	-
7	-	차단기 투입 출력	-
8	접점3 고장입력	릴레이 1 출력	차단기 오동작
9	접점4 고장입력	릴레이 2 출력	알람
10	접점5 고장입력	릴레이 3 출력	-
11	접점6 고장입력	릴레이 4 출력	-
12	접점7 고장입력	릴레이 5 출력	-
13	접점8 고장입력	릴레이 6 출력	
14	접점9 고장입력	릴레이 7 출력	-
15	접점10 고장입력	릴레이 8 출력	-

10.2. Control (05H)

ADDRESS	DATA	VALUE	
0002	차단기 투입		
0004	차단기 차단	0.45500	
0014	차단기 투입		
0018	차단기 차단		
0022	블록모드	UXFFUU	
0026	수동운전 모드		
0030	자동운전 모드		
0034	고장해제		

11. 반한시 특성 곡선

- 적용범위 : 과전압, 과전류, 지락과전류 반한시

- X축:입력값/설정값

- Y축:동작시간(초)

- 레버 설정값 : 0.05~1.00

- 동작 공식

동작시간(t) =
$$\frac{0.14}{(입력값/설정값)^{0.02}-1} imes 레버값$$